cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A119891 Prime trio leaders: largest number of a prime trio.

Original entry on oeis.org

29, 47, 83, 137, 173, 191, 227, 263, 281, 317, 353, 443, 461, 599, 641, 797, 821, 887, 911, 977, 1019, 1091, 1109, 1163, 1181, 1217, 1307, 1361, 1433, 1451, 1499, 1523, 1613, 1697, 1721, 1787, 1811, 1877, 1901, 1949, 2027, 2063, 2081, 2153, 2207, 2243
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 27 2006

Keywords

Comments

A prime trio is a set of three distinct prime numbers such that the third number is a 1-digit number which is the sum of the digits of the second number and the second number is the sum of the digits of the first number.

Examples

			443 is in the sequence because it is the largest number of the prime trio (443, 11, 2).
599 is the first term with sum of digits different from 11 (cf. A106754), namely 23 (cf. A106762). This sequence contains also all primes with sum of digits equal to 41, 43, 61 etc., but not 29, 47, ... since the second digit sum must be a single-digit prime, i.e., 2, 3, 5 or 7. - _M. F. Hasler_, Mar 09 2022
		

Crossrefs

Subsequence of A304367.
Cf. A000040 (primes), A007953 (sum of digits), A106754 (primes with s.o.d. = 11), A106762 (s.o.d.(p) = 23), A106774 (s.o.d.(p) = 41), A106775 (s.o.d.(p) = 43), A106787 (s.o.d.(p) = 61): subsequences.

Programs

  • Maple
    filter:= proc(n) local x,y;
      if not isprime(n) then return false fi;
      x:= convert(convert(n,base,10),`+`);
      if x < 10 or not isprime(x) then return false fi;
      y:= convert(convert(x,base,10),`+`);
      member(y,{2,3,5,7})
    end proc:
    select(filter, [seq(i,i=11..10000,2)]); # Robert Israel, May 21 2021
  • Mathematica
    ptQ[n_]:=Module[{c=NestList[Total[IntegerDigits[#]]&,n,2]},Length[ Union[c]] == 3&&And@@PrimeQ[c]]; Select[Prime[Range[500]],ptQ] (* Harvey P. Dale, Aug 15 2012 *)
  • PARI
    select( {is_A119891(n, s=sumdigits(n))=bittest(172, sumdigits(s)) && isprime(s) && s>9 && isprime(n)}, primes([1,2345])) \\ M. F. Hasler, Mar 09 2022

A106766 Primes with digit sum = 29.

Original entry on oeis.org

2999, 3989, 4799, 4889, 5879, 5897, 5987, 6599, 6689, 6779, 6869, 6959, 6977, 7499, 7589, 7877, 7949, 8597, 8669, 8849, 8867, 9479, 9497, 9587, 9677, 9749, 9767, 9839, 9857, 9929, 12899, 13799, 13997, 14699, 14879, 14897, 14969, 15797, 15887, 15959
Offset: 1

Views

Author

Zak Seidov, May 16 2005

Keywords

Comments

Different from A119892.

Crossrefs

Subsequence of A046704 and of A119892.
Cf. A106754.
Cf. similar sequences listed in A244918.

Programs

  • Magma
    [p: p in PrimesUpTo(16000) | &+Intseq(p) eq 29]; // Vincenzo Librandi, Jul 08 2014
    
  • Mathematica
    Select[Prime[Range[10000]], Total[IntegerDigits[#]]==29 &] (* Vincenzo Librandi, Jul 08 2014 *)
  • PARI
    select(x->sumdigits(x)==29, primes(2000))

A119889 Prime soloist : prime number which is no member of any prime ensemble.

Original entry on oeis.org

3, 13, 17, 19, 31, 37, 53, 59, 67, 71, 73, 79, 89, 97, 103, 107, 109, 127, 139, 149, 157, 163, 167, 179, 181, 193, 197, 199, 211, 229, 233, 239, 251, 257, 269, 271, 277, 283, 293, 307, 337, 347, 349, 359, 367, 373, 379, 383, 389, 397, 409, 419, 431, 433, 439
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 27 2006

Keywords

Examples

			17 is in the sequence because the sum of the digits (8) is a composite number. 449 is in the sequence because the sum of the digits (17) is another prime soloist.
		

Crossrefs

Extensions

Corrected by T. D. Noe, Oct 25 2006

A119890 Prime duet leaders: largest number of a prime duet.

Original entry on oeis.org

11, 23, 41, 43, 61, 101, 113, 131, 151, 223, 241, 311, 313, 331, 401, 421, 601, 1013, 1031, 1033, 1051, 1103, 1123, 1213, 1231, 1301, 1303, 1321, 2003, 2111, 2113, 2131, 2203, 2221, 2311, 3011, 3121, 3301, 4001, 4003, 4021, 4111, 4201, 5011, 5101, 10103
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 27 2006

Keywords

Comments

A prime duet is a pair of two different prime numbers such that the second number is a 1-digit number which is the sum of the digits of the first number.
The terms of the sequence must be at least 2 digits in length, so {5,5} is not a prime duet. - Harvey P. Dale, May 07 2021

Examples

			113 is in the sequence because it is the largest number of the prime duet (113,5)
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[5,1300]],IntegerLength[Total[IntegerDigits[#]]]==1&&PrimeQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, May 07 2021 *)
  • PARI
    \\ See PARI link. David A. Corneth, May 07 2021

Extensions

Corrected by Harvey P. Dale, May 07 2021
Showing 1-4 of 4 results.