cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A291000 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.

Original entry on oeis.org

1, 3, 9, 26, 74, 210, 596, 1692, 4804, 13640, 38728, 109960, 312208, 886448, 2516880, 7146144, 20289952, 57608992, 163568448, 464417728, 1318615104, 3743926400, 10630080640, 30181847168, 85694918912, 243312448256, 690833811712, 1961475291648, 5569190816256
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
In the following guide to p-INVERT sequences using s = (1,1,1,1,1,...) = A000012, in some cases t(1,1,1,1,1,...) is a shifted version of the cited sequence:
p(S) t(1,1,1,1,1,...)
1 - S A000079
1 - S^2 A000079
1 - S^3 A024495
1 - S^4 A000749
1 - S^5 A139761
1 - S^6 A290993
1 - S^7 A290994
1 - S^8 A290995
1 - S - S^2 A001906
1 - S - S^3 A116703
1 - S - S^4 A290996
1 - S^3 - S^6 A290997
1 - S^2 - S^3 A095263
1 - S^3 - S^4 A290998
1 - 2 S^2 A052542
1 - 3 S^2 A002605
1 - 4 S^2 A015518
1 - 5 S^2 A163305
1 - 6 S^2 A290999
1 - 7 S^2 A291008
1 - 8 S^2 A291001
(1 - S)^2 A045623
(1 - S)^3 A058396
(1 - S)^4 A062109
(1 - S)^5 A169792
(1 - S)^6 A169793
(1 - S^2)^2 A024007
1 - 2 S - 2 S^2 A052530
1 - 3 S - 2 S^2 A060801
(1 - S)(1 - 2 S) A053581
(1 - 2 S)(1 - 3 S) A291002
(1 - S)(1 - 2 S)(1 - 3 S)(1 - 4 S) A291003
(1 - 2 S)^2 A120926
(1 - 3 S)^2 A291004
1 + S - S^2 A000045 (Fibonacci numbers starting with -1)
1 - S - S^2 - S^3 A291000
1 - S - S^2 - S^3 - S^4 A291006
1 - S - S^2 - S^3 - S^4 - S^5 A291007
1 - S^2 - S^4 A290990
(1 - S)(1 - 3 S) A291009
(1 - S)(1 - 2 S)(1 - 3 S) A291010
(1 - S)^2 (1 - 2 S) A291011
(1 - S^2)(1 - 2 S) A291012
(1 - S^2)^3 A291013
(1 - S^3)^2 A291014
1 - S - S^2 + S^3 A045891
1 - 2 S - S^2 + S^3 A291015
1 - 3 S + S^2 A136775
1 - 4 S + S^2 A291016
1 - 5 S + S^2 A291017
1 - 6 S + S^2 A291018
1 - S - S^2 - S^3 + S^4 A291019
1 - S - S^2 - S^3 - S^4 + S^5 A291020
1 - S - S^2 - S^3 + S^4 + S^5 A291021
1 - S - 2 S^2 + 2 S^3 A175658
1 - 3 S^2 + 2 S^3 A291023
(1 - 2 S^2)^2 A291024
(1 - S^3)^3 A291143
(1 - S - S^2)^2 A209917

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291000 *)

Formula

G.f.: (-1 + x - x^2)/(-1 + 4 x - 4 x^2 + 2 x^3).
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3) for n >= 4.

A269201 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

4, 16, 16, 60, 180, 64, 216, 1284, 1740, 256, 756, 9612, 25572, 15540, 1024, 2592, 68052, 400428, 471492, 132300, 4096, 8748, 472044, 5877228, 15289548, 8314020, 1090740, 16384, 29160, 3212820, 84310620, 463790340, 555862380, 142233732
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Table starts
.......4.........16.............60...............216..................756
......16........180...........1284..............9612................68052
......64.......1740..........25572............400428..............5877228
.....256......15540.........471492..........15289548............463790340
....1024.....132300........8314020.........555862380..........34838403756
....4096....1090740......142233732.......19558138380........2532677348772
...16384....8787660.....2380537188......672230393004......179867149105740
...65536...69580980....39186271044....22702294138188....12551707872624132
..262144..543538380...636703584804...756261535626732...864008559706781292
.1048576.4200069300.10237337586180.24917784636315276.58827234014669683044

Examples

			Some solutions for n=3 k=4
..2..2..0..0. .2..2..1..1. .2..0..0..1. .0..0..2..2. .2..2..2..2
..1..0..0..2. .2..0..0..0. .0..2..0..2. .2..2..2..2. .0..0..0..1
..2..0..2..0. .1..0..0..0. .1..0..2..0. .1..0..0..2. .1..1..1..1
		

Crossrefs

Column 1 is A000302.
Column 2 is A269103.
Row 1 is A120926(n+1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 14*a(n-1) -49*a(n-2) for n>3
k=3: a(n) = 30*a(n-1) -237*a(n-2) +180*a(n-3) -36*a(n-4) for n>5
k=4: [order 6] for n>7
k=5: [order 20] for n>21
k=6: [order 42] for n>43
Empirical for row n:
n=1: a(n) = 6*a(n-1) -9*a(n-2)
n=2: a(n) = 10*a(n-1) -13*a(n-2) -60*a(n-3) -36*a(n-4)
n=3: [order 8]
n=4: [order 20]
n=5: [order 52] for n>53

A269289 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

4, 16, 16, 60, 216, 64, 216, 2124, 2592, 256, 756, 19188, 62748, 29160, 1024, 2592, 164556, 1363572, 1698732, 314928, 4096, 8748, 1363572, 27788292, 87559668, 43674876, 3306744, 16384, 29160, 11026764, 544118148, 4204943820, 5306911092
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2016

Keywords

Comments

Table starts
......4.........16.............60...............216...................756
.....16........216...........2124.............19188................164556
.....64.......2592..........62748...........1363572..............27788292
....256......29160........1698732..........87559668............4204943820
...1024.....314928.......43674876........5306911092..........598478857956
...4096....3306744.....1085203980......309846524148........81907569617580
..16384...34012224....26317946844....17623065834612.....10908770041709316
..65536..344373768...626778812268...983118947312628...1424067311317705740
.262144.3443737680.14718495557052.54032675767734132.183070424003703987492

Examples

			Some solutions for n=3 k=4
..0..2..3..3. .0..2..3..1. .0..0..0..1. .0..2..2..2. .2..0..0..2
..2..1..3..1. .2..1..0..2. .2..2..3..1. .0..2..0..0. .0..0..3..3
..3..1..0..1. .1..0..2..0. .1..3..3..3. .2..0..0..2. .0..1..1..0
		

Crossrefs

Column 1 is A000302.
Column 2 is A159739(n+1).
Row 1 is A120926(n+1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 18*a(n-1) -81*a(n-2)
k=3: a(n) = 42*a(n-1) -441*a(n-2)
k=4: a(n) = 98*a(n-1) -2401*a(n-2) for n>3
k=5: a(n) = 234*a(n-1) -14277*a(n-2) +68796*a(n-3) -86436*a(n-4)
k=6: [order 6] for n>7
k=7: [order 10] for n>11
Empirical for row n:
n=1: a(n) = 6*a(n-1) -9*a(n-2)
n=2: a(n) = 14*a(n-1) -49*a(n-2) for n>4
n=3: a(n) = 36*a(n-1) -378*a(n-2) +972*a(n-3) -729*a(n-4) for n>7
n=4: [order 8] for n>12
n=5: [order 18] for n>23
n=6: [order 40] for n>46

A269109 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or vertically adjacent neighbor totalling three no more than once.

Original entry on oeis.org

4, 16, 16, 60, 180, 60, 216, 1740, 1740, 216, 756, 15540, 40908, 15540, 756, 2592, 132300, 872460, 872460, 132300, 2592, 8748, 1090740, 17593092, 43964700, 17593092, 1090740, 8748, 29160, 8787660, 342055548, 2085484068, 2085484068
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Comments

Table starts
......4.........16.............60................216....................756
.....16........180...........1740..............15540.................132300
.....60.......1740..........40908.............872460...............17593092
....216......15540.........872460...........43964700.............2085484068
....756.....132300.......17593092.........2085484068...........232068730044
...2592....1090740......342055548........95166487524.........24808345933548
...8748....8787660.....6482020140......4227147007836.......2579398703502996
..29160...69580980...120520189980....184069947098892.....262780733311913580
..96228..543538380..2208175854948...7894012975085748...26357371124964908460
.314928.4200069300.39988864047276.334480929126425748.2611360040338484328156

Examples

			Some solutions for n=3 k=4
..0..0..1..2. .0..2..2..0. .0..1..1..1. .0..2..3..1. .2..0..1..0
..0..2..3..3. .0..2..0..1. .0..0..3..1. .0..0..1..3. .0..0..1..1
..1..3..1..3. .1..0..0..2. .0..2..2..3. .0..0..0..2. .2..2..2..3
		

Crossrefs

Column 1 is A120926(n+1).

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2)
k=2: a(n) = 14*a(n-1) -49*a(n-2) for n>3
k=3: a(n) = 36*a(n-1) -378*a(n-2) +972*a(n-3) -729*a(n-4) for n>5
k=4: [order 6] for n>7
k=5: [order 14] for n>15
k=6: [order 26] for n>27
k=7: [order 64] for n>65

A269143 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, antidiagonally or vertically adjacent neighbor totalling three no more than once.

Original entry on oeis.org

4, 16, 16, 60, 148, 60, 216, 1164, 1164, 216, 756, 8532, 18556, 8532, 756, 2592, 59916, 275796, 275796, 59916, 2592, 8748, 408596, 3924212, 8317996, 3924212, 408596, 8748, 29160, 2727564, 54199284, 240647068, 240647068, 54199284, 2727564, 29160
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Table starts
......4........16............60..............216.................756
.....16.......148..........1164.............8532...............59916
.....60......1164.........18556...........275796.............3924212
....216......8532........275796..........8317996...........240647068
....756.....59916.......3924212........240647068.........14197016484
...2592....408596......54199284.......6766301156........815458664276
...8748...2727564.....732561916.....186315931804......45920055321732
..29160..17914580....9740150372....5049212790572....2546667557472940
..96228.116170764..127846717716..135126561336764..139535357045338964
.314928.745617300.1660741102212.3579710280903028.7570570235882777884

Examples

			Some solutions for n=3 k=4
..0..3..2..3. .2..0..2..2. .0..0..0..2. .0..3..2..3. .0..2..2..2
..2..3..2..2. .2..0..0..0. .0..0..0..2. .2..3..3..3. .0..0..0..2
..2..2..3..3. .3..1..0..2. .1..1..0..1. .2..2..2..2. .0..2..2..2
		

Crossrefs

Column 1 is A120926(n+1).

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2)
k=2: a(n) = 12*a(n-1) -38*a(n-2) +12*a(n-3) -a(n-4) for n>5
k=3: [order 8] for n>9
k=4: [order 20] for n>22
k=5: [order 42] for n>45

A269194 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, diagonally, antidiagonally or vertically adjacent neighbor totalling three no more than once.

Original entry on oeis.org

4, 16, 16, 60, 108, 60, 216, 708, 708, 216, 756, 4476, 9284, 4476, 756, 2592, 27684, 115452, 115452, 27684, 2592, 8748, 168252, 1399612, 2817548, 1399612, 168252, 8748, 29160, 1008804, 16629436, 67134380, 67134380, 16629436, 1008804, 29160
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Table starts
......4........16...........60.............216................756
.....16.......108..........708............4476..............27684
.....60.......708.........9284..........115452............1399612
....216......4476.......115452.........2817548...........67134380
....756.....27684......1399612........67134380.........3159954052
...2592....168252.....16629436......1567933676.......145995171708
...8748...1008804....194596516.....36068275268......6648192704604
..29160...5983164...2249848972....819789099172....299224791093196
..96228..35170980..25758552060..18452018423420..13339889117822420
.314928.205214268.292530733516.411983259384452.590022908205332548

Examples

			Some solutions for n=3 k=4
..0..1..1..3. .0..0..2..2. .2..3..1..3. .1..3..1..1. .2..3..2..1
..0..1..3..1. .2..0..0..2. .2..3..1..3. .1..1..1..3. .2..2..3..3
..1..3..1..1. .2..0..2..0. .3..3..1..0. .0..3..1..3. .3..2..3..2
		

Crossrefs

Column 1 is A120926(n+1).

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2)
k=2: a(n) = 10*a(n-1) -21*a(n-2) -20*a(n-3) -4*a(n-4) for n>5
k=3: [order 8] for n>9
k=4: [order 16] for n>17
k=5: [order 40] for n>41

A120924 Triangle read by rows: T(n,k) is the number of ternary words of length n on {0,1,2}, having k isolated 0's (n >= 0, k >= 0).

Original entry on oeis.org

1, 2, 1, 5, 4, 13, 12, 2, 33, 36, 12, 83, 108, 48, 4, 209, 316, 172, 32, 527, 904, 588, 160, 8, 1329, 2548, 1932, 672, 80, 3351, 7104, 6140, 2592, 480, 16, 8449, 19628, 19020, 9440, 2320, 192, 21303, 53816, 57756, 32896, 10000, 1344, 32, 53713, 146596
Offset: 0

Views

Author

Emeric Deutsch, Jul 16 2006

Keywords

Comments

Row n has 1+ceiling(n/2) terms.
Row sums are the powers of 3 (A000244).
T(n,0) = A120925(n).
Sum_{k=0..ceiling(n/2)} k*T(n,k) = A120926(n).

Examples

			T(2,0)=5 because we have 00,11,12,21 and 22; T(2,1)=4 because we have 01,02,10 and 20; T(3,2)=2 because we have 010 and 020.
Triangle starts:
   1;
   2,   1;
   5,   4;
  13,  12,  2;
  33,  36, 12;
  83, 108, 48, 4;
		

Crossrefs

Programs

  • Maple
    G:=(1-(1-t)*z*(1-z))/(1-3*z+2*(1-t)*z^2*(1-z)): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 13 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..ceil(n/2)) od; # yields sequence in triangular form

Formula

G.f. = G(t,z) = (1-(1-t)z(1-z))/(1 - 3z + 2(1-t)z^2*(1-z)).

A123515 Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 231 exactly once (n>=4, 2<=k<=n-2).

Original entry on oeis.org

1, 0, 2, 2, 0, 3, 0, 8, 0, 4, 5, 0, 18, 0, 5, 0, 26, 0, 32, 0, 6, 12, 0, 75, 0, 50, 0, 7, 0, 76, 0, 164, 0, 72, 0, 8, 28, 0, 264, 0, 305, 0, 98, 0, 9, 0, 208, 0, 680, 0, 510, 0, 128, 0, 10, 64, 0, 840, 0, 1460, 0, 791, 0, 162, 0, 11, 0, 544, 0, 2480, 0, 2772, 0, 1160, 0, 200, 0, 12
Offset: 4

Views

Author

Emeric Deutsch, Oct 13 2006

Keywords

Comments

Also the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 312 exactly once (n>=4, 2<=k<=n-2). Example: T(5,3)=2 because we have 15342 and 42315 (also the involution 52341 has 3 fixed points but it contains 3 times the pattern 312: 523, 524 and 534).

Examples

			T(5,3)=2 because we have 15342 and 42315 (also the involution 52341 has 3 fixed points but it contains 3 times the pattern 231: 231, 241 and 341).
Triangle starts:
   1;
   0,   2;
   2,   0,   3;
   0,   8,   0,    4;
   5,   0,  18,    0,    5;
   0,  26,   0,   32,    0,    6;
  12,   0,  75,    0,   50,    0,   7;
   0,  76,   0,  164,    0,   72,   0,    8;
  28,   0, 264,    0,  305,    0,  98,    0,   9;
   0, 208,   0,  680,    0,  510,   0,  128,   0,  10;
  64,   0, 840,    0, 1460,    0, 791,    0, 162,   0, 11;
   0, 544,   0, 2480,    0, 2772,   0, 1160,   0, 200,  0, 12;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n>=4 and n+k mod 2 = 0 then (k-1)*2^((n-k-6)/2)*(binomial((n+k)/2-2,(n-k)/2-1)+2*binomial((n+k)/2-3, (n-k)/2-1)+binomial((n+k)/2-4,(n-k)/2-1)) else 0 fi end: for n from 4 to 16 do seq(T(n,k),k=2..n-2) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= ((1+(-1)^(n-k))/2)*2^((n-k-6)/2)*(k-1)* Sum[Binomial[2, j]*
      Binomial[(n+k-2*(j+2))/2, (n-k-2)/2], {j, 0, 2}];
    Table[T[n, k], {n,4,16}, {k,2,n-2}]//Flatten (* G. C. Greubel, Jan 16 2022 *)
  • Sage
    def A123515(n,k): return ((1+(-1)^(n+k))/2)*2^((n-k-6)/2)*(k-1)*sum( binomial(2, j)*binomial((n+k-2*j-2)/2, (n-k-2)/2) for j in (0..2) )
    flatten([[A123515(n,k) for k in (2..n-2)] for n in (4..16)]) # G. C. Greubel, Jan 16 2022

Formula

T(n, k) = 2^((n-k-6)/2)*(k-1)*( binomial((n+k)/2-2, (n-k)/2-1) + 2*binomial((n+k)/2-3, (n-k)/2-1) + binomial((n+k)/2-4, (n-k)/2-1) ) for n>=4, n+k even; T(n,k) = 0 otherwise.
From G. C. Greubel, Jan 16 2022: (Start)
Sum_{k=2..n-4} T(n, k) = A045623(n).
Sum_{k=2..floor(n/2)} T(n-k+2, k) = (1/9)*[n=4] + (1+(-1)^n)*n*3^((n-8)/2). (End)

A209240 Triangular array read by rows. T(n,k) is the number of ternary length-n words in which the longest run of consecutive 0's is exactly k; n>=0, 0<=k<=n.

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 8, 14, 4, 1, 16, 44, 16, 4, 1, 32, 132, 58, 16, 4, 1, 64, 384, 200, 60, 16, 4, 1, 128, 1096, 668, 214, 60, 16, 4, 1, 256, 3088, 2180, 740, 216, 60, 16, 4, 1, 512, 8624, 6992, 2504, 754, 216, 60, 16, 4, 1, 1024, 23936, 22128, 8332, 2576, 756, 216, 60, 16, 4, 1
Offset: 0

Views

Author

Geoffrey Critzer, Jan 13 2013

Keywords

Comments

Row sums are 3^n.
Column k=0 is A000079.
Column k=1 is A094309.
Limit of reversed rows gives A120926.

Examples

			1;
2,   1;
4,   4,    1;
8,   14,   4,    1;
16,  44,   16,   4,   1;
32,  132,  58,   16,  4,   1;
64,  384,  200,  60,  16,  4,  1;
128, 1096, 668,  214, 60,  16, 4,  1;
256, 3088, 2180, 740, 216, 60, 16, 4,  1;
		

Crossrefs

Cf. A048004.

Programs

  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Map[f,Transpose[Table[CoefficientList[ Series[(1-x^k)/(1-3x+2x^(k+1))-(1-x^(k-1))/(1-3x+2x^k),{x,0,nn}],x],{k,1,nn+1}]]]//Grid

Formula

O.g.f. for column k: (1-x)^2*x^k/(1-3*x+2*x^(k+1))/(1-3*x+2*x^(k+2)).
Showing 1-9 of 9 results.