A291000
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.
Original entry on oeis.org
1, 3, 9, 26, 74, 210, 596, 1692, 4804, 13640, 38728, 109960, 312208, 886448, 2516880, 7146144, 20289952, 57608992, 163568448, 464417728, 1318615104, 3743926400, 10630080640, 30181847168, 85694918912, 243312448256, 690833811712, 1961475291648, 5569190816256
Offset: 0
-
z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291000 *)
A269201
T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.
Original entry on oeis.org
4, 16, 16, 60, 180, 64, 216, 1284, 1740, 256, 756, 9612, 25572, 15540, 1024, 2592, 68052, 400428, 471492, 132300, 4096, 8748, 472044, 5877228, 15289548, 8314020, 1090740, 16384, 29160, 3212820, 84310620, 463790340, 555862380, 142233732
Offset: 1
Some solutions for n=3 k=4
..2..2..0..0. .2..2..1..1. .2..0..0..1. .0..0..2..2. .2..2..2..2
..1..0..0..2. .2..0..0..0. .0..2..0..2. .2..2..2..2. .0..0..0..1
..2..0..2..0. .1..0..0..0. .1..0..2..0. .1..0..0..2. .1..1..1..1
A269289
T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three no more than once.
Original entry on oeis.org
4, 16, 16, 60, 216, 64, 216, 2124, 2592, 256, 756, 19188, 62748, 29160, 1024, 2592, 164556, 1363572, 1698732, 314928, 4096, 8748, 1363572, 27788292, 87559668, 43674876, 3306744, 16384, 29160, 11026764, 544118148, 4204943820, 5306911092
Offset: 1
Some solutions for n=3 k=4
..0..2..3..3. .0..2..3..1. .0..0..0..1. .0..2..2..2. .2..0..0..2
..2..1..3..1. .2..1..0..2. .2..2..3..1. .0..2..0..0. .0..0..3..3
..3..1..0..1. .1..0..2..0. .1..3..3..3. .2..0..0..2. .0..1..1..0
A269109
T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or vertically adjacent neighbor totalling three no more than once.
Original entry on oeis.org
4, 16, 16, 60, 180, 60, 216, 1740, 1740, 216, 756, 15540, 40908, 15540, 756, 2592, 132300, 872460, 872460, 132300, 2592, 8748, 1090740, 17593092, 43964700, 17593092, 1090740, 8748, 29160, 8787660, 342055548, 2085484068, 2085484068
Offset: 1
Some solutions for n=3 k=4
..0..0..1..2. .0..2..2..0. .0..1..1..1. .0..2..3..1. .2..0..1..0
..0..2..3..3. .0..2..0..1. .0..0..3..1. .0..0..1..3. .0..0..1..1
..1..3..1..3. .1..0..0..2. .0..2..2..3. .0..0..0..2. .2..2..2..3
A269143
T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, antidiagonally or vertically adjacent neighbor totalling three no more than once.
Original entry on oeis.org
4, 16, 16, 60, 148, 60, 216, 1164, 1164, 216, 756, 8532, 18556, 8532, 756, 2592, 59916, 275796, 275796, 59916, 2592, 8748, 408596, 3924212, 8317996, 3924212, 408596, 8748, 29160, 2727564, 54199284, 240647068, 240647068, 54199284, 2727564, 29160
Offset: 1
Some solutions for n=3 k=4
..0..3..2..3. .2..0..2..2. .0..0..0..2. .0..3..2..3. .0..2..2..2
..2..3..2..2. .2..0..0..0. .0..0..0..2. .2..3..3..3. .0..0..0..2
..2..2..3..3. .3..1..0..2. .1..1..0..1. .2..2..2..2. .0..2..2..2
A269194
T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, diagonally, antidiagonally or vertically adjacent neighbor totalling three no more than once.
Original entry on oeis.org
4, 16, 16, 60, 108, 60, 216, 708, 708, 216, 756, 4476, 9284, 4476, 756, 2592, 27684, 115452, 115452, 27684, 2592, 8748, 168252, 1399612, 2817548, 1399612, 168252, 8748, 29160, 1008804, 16629436, 67134380, 67134380, 16629436, 1008804, 29160
Offset: 1
Some solutions for n=3 k=4
..0..1..1..3. .0..0..2..2. .2..3..1..3. .1..3..1..1. .2..3..2..1
..0..1..3..1. .2..0..0..2. .2..3..1..3. .1..1..1..3. .2..2..3..3
..1..3..1..1. .2..0..2..0. .3..3..1..0. .0..3..1..3. .3..2..3..2
A120924
Triangle read by rows: T(n,k) is the number of ternary words of length n on {0,1,2}, having k isolated 0's (n >= 0, k >= 0).
Original entry on oeis.org
1, 2, 1, 5, 4, 13, 12, 2, 33, 36, 12, 83, 108, 48, 4, 209, 316, 172, 32, 527, 904, 588, 160, 8, 1329, 2548, 1932, 672, 80, 3351, 7104, 6140, 2592, 480, 16, 8449, 19628, 19020, 9440, 2320, 192, 21303, 53816, 57756, 32896, 10000, 1344, 32, 53713, 146596
Offset: 0
T(2,0)=5 because we have 00,11,12,21 and 22; T(2,1)=4 because we have 01,02,10 and 20; T(3,2)=2 because we have 010 and 020.
Triangle starts:
1;
2, 1;
5, 4;
13, 12, 2;
33, 36, 12;
83, 108, 48, 4;
-
G:=(1-(1-t)*z*(1-z))/(1-3*z+2*(1-t)*z^2*(1-z)): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 13 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..ceil(n/2)) od; # yields sequence in triangular form
A123515
Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 231 exactly once (n>=4, 2<=k<=n-2).
Original entry on oeis.org
1, 0, 2, 2, 0, 3, 0, 8, 0, 4, 5, 0, 18, 0, 5, 0, 26, 0, 32, 0, 6, 12, 0, 75, 0, 50, 0, 7, 0, 76, 0, 164, 0, 72, 0, 8, 28, 0, 264, 0, 305, 0, 98, 0, 9, 0, 208, 0, 680, 0, 510, 0, 128, 0, 10, 64, 0, 840, 0, 1460, 0, 791, 0, 162, 0, 11, 0, 544, 0, 2480, 0, 2772, 0, 1160, 0, 200, 0, 12
Offset: 4
T(5,3)=2 because we have 15342 and 42315 (also the involution 52341 has 3 fixed points but it contains 3 times the pattern 231: 231, 241 and 341).
Triangle starts:
1;
0, 2;
2, 0, 3;
0, 8, 0, 4;
5, 0, 18, 0, 5;
0, 26, 0, 32, 0, 6;
12, 0, 75, 0, 50, 0, 7;
0, 76, 0, 164, 0, 72, 0, 8;
28, 0, 264, 0, 305, 0, 98, 0, 9;
0, 208, 0, 680, 0, 510, 0, 128, 0, 10;
64, 0, 840, 0, 1460, 0, 791, 0, 162, 0, 11;
0, 544, 0, 2480, 0, 2772, 0, 1160, 0, 200, 0, 12;
-
T:=proc(n,k) if n>=4 and n+k mod 2 = 0 then (k-1)*2^((n-k-6)/2)*(binomial((n+k)/2-2,(n-k)/2-1)+2*binomial((n+k)/2-3, (n-k)/2-1)+binomial((n+k)/2-4,(n-k)/2-1)) else 0 fi end: for n from 4 to 16 do seq(T(n,k),k=2..n-2) od; # yields sequence in triangular form
-
T[n_, k_]:= ((1+(-1)^(n-k))/2)*2^((n-k-6)/2)*(k-1)* Sum[Binomial[2, j]*
Binomial[(n+k-2*(j+2))/2, (n-k-2)/2], {j, 0, 2}];
Table[T[n, k], {n,4,16}, {k,2,n-2}]//Flatten (* G. C. Greubel, Jan 16 2022 *)
-
def A123515(n,k): return ((1+(-1)^(n+k))/2)*2^((n-k-6)/2)*(k-1)*sum( binomial(2, j)*binomial((n+k-2*j-2)/2, (n-k-2)/2) for j in (0..2) )
flatten([[A123515(n,k) for k in (2..n-2)] for n in (4..16)]) # G. C. Greubel, Jan 16 2022
A209240
Triangular array read by rows. T(n,k) is the number of ternary length-n words in which the longest run of consecutive 0's is exactly k; n>=0, 0<=k<=n.
Original entry on oeis.org
1, 2, 1, 4, 4, 1, 8, 14, 4, 1, 16, 44, 16, 4, 1, 32, 132, 58, 16, 4, 1, 64, 384, 200, 60, 16, 4, 1, 128, 1096, 668, 214, 60, 16, 4, 1, 256, 3088, 2180, 740, 216, 60, 16, 4, 1, 512, 8624, 6992, 2504, 754, 216, 60, 16, 4, 1, 1024, 23936, 22128, 8332, 2576, 756, 216, 60, 16, 4, 1
Offset: 0
1;
2, 1;
4, 4, 1;
8, 14, 4, 1;
16, 44, 16, 4, 1;
32, 132, 58, 16, 4, 1;
64, 384, 200, 60, 16, 4, 1;
128, 1096, 668, 214, 60, 16, 4, 1;
256, 3088, 2180, 740, 216, 60, 16, 4, 1;
-
nn=10;f[list_]:=Select[list,#>0&];Map[f,Transpose[Table[CoefficientList[ Series[(1-x^k)/(1-3x+2x^(k+1))-(1-x^(k-1))/(1-3x+2x^k),{x,0,nn}],x],{k,1,nn+1}]]]//Grid
Showing 1-9 of 9 results.
Comments