cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A381603 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A120973.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 6, 0, 1, 3, 13, 60, 0, 1, 4, 21, 132, 776, 0, 1, 5, 30, 217, 1708, 11802, 0, 1, 6, 40, 316, 2814, 25876, 201465, 0, 1, 7, 51, 430, 4113, 42510, 439446, 3759100, 0, 1, 8, 63, 560, 5625, 62016, 718647, 8155874, 75404151, 0, 1, 9, 76, 707, 7371, 84731, 1044228, 13270944, 162762498, 1608036861, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2025

Keywords

Examples

			Square array begins:
  1,      1,      1,      1,       1,       1,       1, ...
  0,      1,      2,      3,       4,       5,       6, ...
  0,      6,     13,     21,      30,      40,      51, ...
  0,     60,    132,    217,     316,     430,     560, ...
  0,    776,   1708,   2814,    4113,    5625,    7371, ...
  0,  11802,  25876,  42510,   62016,   84731,  111018, ...
  0, 201465, 439446, 718647, 1044228, 1421835, 1857631, ...
		

Crossrefs

Columns k=0..1 give A000007, A120973.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+k, j)/(3*n+k)*a(n-j, 3*j)));

Formula

See A120973.

A120971 G.f. A(x) satisfies A(x) = 1 + x*A(x)^2 * A( x*A(x)^2 )^2.

Original entry on oeis.org

1, 1, 4, 26, 218, 2151, 23854, 289555, 3783568, 52624689, 772928988, 11918181144, 192074926618, 3224153299106, 56213565222834, 1015694652332437, 18982833869517376, 366384235565593176, 7292660345274942402
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 218*x^4 + 2151*x^5 + 23854*x^6 +...
From _Paul D. Hanna_, Apr 16 2007: G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*B^2;
B = A*(1 + x*C^2);
C = B*(1 + x*D^2);
D = C*(1 + x*E^2);
E = D*(1 + x*F^2); ...
The above series begin:
B(x) = 1 + 2*x + 11*x^2 + 87*x^3 + 841*x^4 + 9288*x^5 + 113166*x^6 +...
C(x) = 1 + 3*x + 21*x^2 + 198*x^3 + 2204*x^4 + 27431*x^5 + 371102*x^6 +...
D(x) = 1 + 4*x + 34*x^2 + 374*x^3 + 4747*x^4 + 66350*x^5 + 996943*x^6 +...
E(x) = 1 + 5*x + 50*x^2 + 630*x^3 + 9015*x^4 + 140510*x^5 + 2334895*x^6 +...
F(x) = 1 + 6*x + 69*x^2 + 981*x^3 + 15658*x^4 + 270016*x^5 + 4933294*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    m = 19; A[] = 0; Do[A[x] = 1 + x A[x]^2 A[x A[x]^2]^2 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 07 2019 *)
  • PARI
    {a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^2))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/2));A[n+1]}
    
  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*a(n-j, 2*j))); \\ Seiichi Manyama, Mar 01 2025

Formula

G.f. A(x) satisfies:
(1) A(x) = G(G(x)-1),
(2) A(G(x)-1) = G(A(x)-1),
(3) A(x) = G(x*A(x)^2),
(4) A(x/G(x)^2) = G(x),
where G(x) is the g.f. of A120970 and satisfies G(x/G(x)^2) = 1 + x.
G.f. A(x) = F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+1)^2) for n>0 with F(x,0)=1. - Paul D. Hanna, Apr 16 2007
Let B(x) = Sum_{n>=0} a(n)*x^(2*n+1), then B( x/(1+B(x)^2) ) = x. - Paul D. Hanna, Oct 30 2013
From Seiichi Manyama, Mar 01 2025: (Start)
Let a(n,k) = [x^n] A(x)^k.
a(n,0) = 0^n; a(n,k) = k * Sum_{j=0..n} binomial(2*n+k,j)/(2*n+k) * a(n-j,2*j). (End)

A120972 G.f. A(x) satisfies A(x/A(x)^3) = 1 + x ; thus A(x) = 1 + series_reversion(x/A(x)^3).

Original entry on oeis.org

1, 1, 3, 21, 217, 2814, 42510, 718647, 13270944, 263532276, 5567092665, 124143735663, 2905528740060, 71058906460091, 1809695198254281, 47861102278428198, 1311488806252697283, 37164457324943708739, 1087356593493807164289, 32801308084353988297404
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Comments

More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then
A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x);
thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 217*x^4 + 2814*x^5 + 42510*x^6 +...
Related expansions.
A(x)^3 = 1 + 3*x + 12*x^2 + 82*x^3 + 813*x^4 + 10212*x^5 + 150699*x^6 +...
A(A(x)-1) = 1 + x + 6*x^2 + 60*x^3 + 776*x^4 + 11802*x^5 + 201465*x^6 +...
A(A(x)-1)^3 = 1 + 3*x + 21*x^2 + 217*x^3 + 2814*x^4 + 42510*x^5 +...
x/A(x)^3 = x - 3*x^2 - 3*x^3 - 37*x^4 - 420*x^5 - 5823*x^6 -...
Series_Reversion(x/A(x)^3) = x + 3*x^2 + 21*x^3 + 217*x^4 + 2814*x^5 + 42510*x^6 +...
To illustrate the formula a(n) = [x^(n-1)] 3*A(x)^(3*n)/(3*n),
form a table of coefficients in A(x)^(3*n) as follows:
  A^3:  [(1), 3,  12,   82,    813,   10212,   150699,   2503233, ...];
  A^6:  [ 1, (6), 33,  236,   2262,   27270,   388906,   6289080, ...];
  A^9:  [ 1,  9, (63), 489,   4671,   54684,   756012,  11904813, ...];
  A^12: [ 1, 12, 102, (868),  8445,   97260,  1310040,  20112516, ...];
  A^15: [ 1, 15, 150, 1400, (14070), 161343,  2130505,  31961175, ...];
  A^18: [ 1, 18, 207, 2112,  22113, (255060), 3324003,  48876264, ...];
  A^21: [ 1, 21, 273, 3031,  33222,  388563, (5030529), 72769014, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[3/3*(1), 3/6*(6), 3/9*(63), 3/12*(868), 3/15*(14070), 3/18*(255060), ...].
		

Crossrefs

Programs

  • Mathematica
    terms = 18; A[] = 1; Do[A[x] = 1 + x*A[A[x] - 1]^3 + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
  • PARI
    {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^3))[ #A]);A[n+1]}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*subst(A^3,x,A-1+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    /* This sequence is generated when k=3, m=0: A(x/A(x)^k) = 1 + x*A(x)^m */
    {a(n, k=3, m=0)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+k, j)/(3*n+k)*b(n-j, 3*j)));
    a(n) = if(n==0, 1, b(n-1, 3)); \\ Seiichi Manyama, Jun 04 2025

Formula

G.f. satisfies: A(x) = 1 + x*A(A(x) - 1)^3.
a(n) = [x^(n-1)] A(x)^(3*n)/n for n>=1 with a(0)=1; i.e., a(n) equals the coefficient of x^(n-1) in A(x)^(3*n)/n for n>=1 (see comment).
Let B(x) be the g.f. of A120973, then B(x) and g.f. A(x) are related by:
(a) B(x) = A(A(x)-1),
(b) B(x) = A(x*B(x)^3),
(c) A(x) = B(x/A(x)^3),
(d) A(x) = 1 + x*B(x)^3,
(e) B(x) = 1 + x*B(x)^3*B(A(x)-1)^3,
(f) A(B(x)-1) = B(A(x)-1) = B(x*B(x)^3).
From Seiichi Manyama, Jun 04 2025: (Start)
Let b(n,k) = [x^n] B(x)^k, where B(x) is the g.f. of A120973.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(3*n+k,j)/(3*n+k) * b(n-j,3*j).
a(n) = b(n-1,3) for n > 0. (End)

A120975 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 * A(x*A(x)^4)^4.

Original entry on oeis.org

1, 1, 8, 108, 1888, 38798, 894308, 22517256, 609112756, 17507219813, 530495478900, 16850219461706, 558608940038072, 19263089278722726, 689119527976265884, 25519081467271687938, 976447764170903902364
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^4))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/4));A[n+1]}
    
  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(4*n+k, j)/(4*n+k)*a(n-j, 4*j))); \\ Seiichi Manyama, Mar 01 2025

Formula

G.f. A(x) satisfies: A(x) = G(G(x)-1), A(G(x)-1) = G(A(x)-1), A(x) = G(x*A(x)^4) and A(x/G(x)^4) = G(x), where G(x) is the g.f. of A120974 and satisfies G(x/G(x)^4) = 1 + x.
From Seiichi Manyama, Mar 01 2025: (Start)
Let a(n,k) = [x^n] A(x)^k.
a(n,0) = 0^n; a(n,k) = k * Sum_{j=0..n} binomial(4*n+k,j)/(4*n+k) * a(n-j,4*j). (End)

A120977 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5 * A(x*A(x)^5)^5.

Original entry on oeis.org

1, 1, 10, 170, 3745, 96960, 2814752, 89221360, 3037327145, 109825686370, 4185287088735, 167139924222426, 6964610755602495, 301800832258018835, 13564159649547824735, 630916661388096564620, 30316241123672291911875
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^5))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/5));A[n+1]}
    
  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(5*n+k, j)/(5*n+k)*a(n-j, 5*j))); \\ Seiichi Manyama, Mar 01 2025

Formula

G.f. A(x) satisfies: A(x) = G(G(x)-1), A(G(x)-1) = G(A(x)-1), A(x) = G(x*A(x)^5) and A(x/G(x)^5) = G(x), where G(x) is the g.f. of A120976 and satisfies G(x/G(x)^5) = 1 + x.
From Seiichi Manyama, Mar 01 2025: (Start)
Let a(n,k) = [x^n] A(x)^k.
a(n,0) = 0^n; a(n,k) = k * Sum_{j=0..n} binomial(5*n+k,j)/(5*n+k) * a(n-j,5*j). (End)

A381615 G.f. A(x) satisfies A(x) = 1/(1 - x * A(x*A(x)^3)^3).

Original entry on oeis.org

1, 1, 4, 31, 320, 3969, 56080, 876204, 14860614, 270231265, 5223002719, 106613106181, 2287120272173, 51367948203527, 1204141944566399, 29385603693050274, 744943334951904519, 19580887642660810193, 532781828387893449124, 14984377196395037979472
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-2*j+k, j)/(3*n-2*j+k)*a(n-j, 3*j)));

Formula

Let a(n,k) = [x^n] A(x)^k.
a(n,0) = 0^n; a(n,k) = k * Sum_{j=0..n} binomial(3*n-2*j+k,j)/(3*n-2*j+k) * a(n-j,3*j).

A381649 G.f. A(x) satisfies A(x) = 1 + x * A(x)^2 * A(x*A(x)^3)^3.

Original entry on oeis.org

1, 1, 5, 44, 510, 7024, 109362, 1871530, 34590180, 682396379, 14251399805, 313170119013, 7207845252630, 173129413258492, 4327373963163746, 112289379643018983, 3018922654575996866, 83951253980821314446, 2411137697712963195801, 71427857356498491780290
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2025

Keywords

Crossrefs

Column k=1 of A381648.

Programs

  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-j+k, j)/(3*n-j+k)*a(n-j, 3*j)));

Formula

See A381648.
Showing 1-7 of 7 results.