A381603
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A120973.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 6, 0, 1, 3, 13, 60, 0, 1, 4, 21, 132, 776, 0, 1, 5, 30, 217, 1708, 11802, 0, 1, 6, 40, 316, 2814, 25876, 201465, 0, 1, 7, 51, 430, 4113, 42510, 439446, 3759100, 0, 1, 8, 63, 560, 5625, 62016, 718647, 8155874, 75404151, 0, 1, 9, 76, 707, 7371, 84731, 1044228, 13270944, 162762498, 1608036861, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 6, 13, 21, 30, 40, 51, ...
0, 60, 132, 217, 316, 430, 560, ...
0, 776, 1708, 2814, 4113, 5625, 7371, ...
0, 11802, 25876, 42510, 62016, 84731, 111018, ...
0, 201465, 439446, 718647, 1044228, 1421835, 1857631, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+k, j)/(3*n+k)*a(n-j, 3*j)));
A120971
G.f. A(x) satisfies A(x) = 1 + x*A(x)^2 * A( x*A(x)^2 )^2.
Original entry on oeis.org
1, 1, 4, 26, 218, 2151, 23854, 289555, 3783568, 52624689, 772928988, 11918181144, 192074926618, 3224153299106, 56213565222834, 1015694652332437, 18982833869517376, 366384235565593176, 7292660345274942402
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 218*x^4 + 2151*x^5 + 23854*x^6 +...
From _Paul D. Hanna_, Apr 16 2007: G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*B^2;
B = A*(1 + x*C^2);
C = B*(1 + x*D^2);
D = C*(1 + x*E^2);
E = D*(1 + x*F^2); ...
The above series begin:
B(x) = 1 + 2*x + 11*x^2 + 87*x^3 + 841*x^4 + 9288*x^5 + 113166*x^6 +...
C(x) = 1 + 3*x + 21*x^2 + 198*x^3 + 2204*x^4 + 27431*x^5 + 371102*x^6 +...
D(x) = 1 + 4*x + 34*x^2 + 374*x^3 + 4747*x^4 + 66350*x^5 + 996943*x^6 +...
E(x) = 1 + 5*x + 50*x^2 + 630*x^3 + 9015*x^4 + 140510*x^5 + 2334895*x^6 +...
F(x) = 1 + 6*x + 69*x^2 + 981*x^3 + 15658*x^4 + 270016*x^5 + 4933294*x^6 +...
-
m = 19; A[] = 0; Do[A[x] = 1 + x A[x]^2 A[x A[x]^2]^2 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 07 2019 *)
-
{a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^2))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/2));A[n+1]}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*a(n-j, 2*j))); \\ Seiichi Manyama, Mar 01 2025
A120972
G.f. A(x) satisfies A(x/A(x)^3) = 1 + x ; thus A(x) = 1 + series_reversion(x/A(x)^3).
Original entry on oeis.org
1, 1, 3, 21, 217, 2814, 42510, 718647, 13270944, 263532276, 5567092665, 124143735663, 2905528740060, 71058906460091, 1809695198254281, 47861102278428198, 1311488806252697283, 37164457324943708739, 1087356593493807164289, 32801308084353988297404
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 217*x^4 + 2814*x^5 + 42510*x^6 +...
Related expansions.
A(x)^3 = 1 + 3*x + 12*x^2 + 82*x^3 + 813*x^4 + 10212*x^5 + 150699*x^6 +...
A(A(x)-1) = 1 + x + 6*x^2 + 60*x^3 + 776*x^4 + 11802*x^5 + 201465*x^6 +...
A(A(x)-1)^3 = 1 + 3*x + 21*x^2 + 217*x^3 + 2814*x^4 + 42510*x^5 +...
x/A(x)^3 = x - 3*x^2 - 3*x^3 - 37*x^4 - 420*x^5 - 5823*x^6 -...
Series_Reversion(x/A(x)^3) = x + 3*x^2 + 21*x^3 + 217*x^4 + 2814*x^5 + 42510*x^6 +...
To illustrate the formula a(n) = [x^(n-1)] 3*A(x)^(3*n)/(3*n),
form a table of coefficients in A(x)^(3*n) as follows:
A^3: [(1), 3, 12, 82, 813, 10212, 150699, 2503233, ...];
A^6: [ 1, (6), 33, 236, 2262, 27270, 388906, 6289080, ...];
A^9: [ 1, 9, (63), 489, 4671, 54684, 756012, 11904813, ...];
A^12: [ 1, 12, 102, (868), 8445, 97260, 1310040, 20112516, ...];
A^15: [ 1, 15, 150, 1400, (14070), 161343, 2130505, 31961175, ...];
A^18: [ 1, 18, 207, 2112, 22113, (255060), 3324003, 48876264, ...];
A^21: [ 1, 21, 273, 3031, 33222, 388563, (5030529), 72769014, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[3/3*(1), 3/6*(6), 3/9*(63), 3/12*(868), 3/15*(14070), 3/18*(255060), ...].
-
terms = 18; A[] = 1; Do[A[x] = 1 + x*A[A[x] - 1]^3 + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
-
{a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^3))[ #A]);A[n+1]}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*subst(A^3,x,A-1+x*O(x^n)));polcoeff(A,n)}
-
/* This sequence is generated when k=3, m=0: A(x/A(x)^k) = 1 + x*A(x)^m */
{a(n, k=3, m=0)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))}
for(n=0,25,print1(a(n),", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+k, j)/(3*n+k)*b(n-j, 3*j)));
a(n) = if(n==0, 1, b(n-1, 3)); \\ Seiichi Manyama, Jun 04 2025
A120975
G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 * A(x*A(x)^4)^4.
Original entry on oeis.org
1, 1, 8, 108, 1888, 38798, 894308, 22517256, 609112756, 17507219813, 530495478900, 16850219461706, 558608940038072, 19263089278722726, 689119527976265884, 25519081467271687938, 976447764170903902364
Offset: 0
-
{a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^4))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/4));A[n+1]}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(4*n+k, j)/(4*n+k)*a(n-j, 4*j))); \\ Seiichi Manyama, Mar 01 2025
A120977
G.f. A(x) satisfies A(x) = 1 + x*A(x)^5 * A(x*A(x)^5)^5.
Original entry on oeis.org
1, 1, 10, 170, 3745, 96960, 2814752, 89221360, 3037327145, 109825686370, 4185287088735, 167139924222426, 6964610755602495, 301800832258018835, 13564159649547824735, 630916661388096564620, 30316241123672291911875
Offset: 0
-
{a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^5))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/5));A[n+1]}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(5*n+k, j)/(5*n+k)*a(n-j, 5*j))); \\ Seiichi Manyama, Mar 01 2025
A381615
G.f. A(x) satisfies A(x) = 1/(1 - x * A(x*A(x)^3)^3).
Original entry on oeis.org
1, 1, 4, 31, 320, 3969, 56080, 876204, 14860614, 270231265, 5223002719, 106613106181, 2287120272173, 51367948203527, 1204141944566399, 29385603693050274, 744943334951904519, 19580887642660810193, 532781828387893449124, 14984377196395037979472
Offset: 0
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-2*j+k, j)/(3*n-2*j+k)*a(n-j, 3*j)));
A381649
G.f. A(x) satisfies A(x) = 1 + x * A(x)^2 * A(x*A(x)^3)^3.
Original entry on oeis.org
1, 1, 5, 44, 510, 7024, 109362, 1871530, 34590180, 682396379, 14251399805, 313170119013, 7207845252630, 173129413258492, 4327373963163746, 112289379643018983, 3018922654575996866, 83951253980821314446, 2411137697712963195801, 71427857356498491780290
Offset: 0
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-j+k, j)/(3*n-j+k)*a(n-j, 3*j)));
Showing 1-7 of 7 results.
Comments