A381602
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A120971.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 26, 0, 1, 4, 15, 60, 218, 0, 1, 5, 22, 103, 504, 2151, 0, 1, 6, 30, 156, 870, 4946, 23854, 0, 1, 7, 39, 220, 1329, 8511, 54430, 289555, 0, 1, 8, 49, 296, 1895, 12988, 93070, 655362, 3783568, 0, 1, 9, 60, 385, 2583, 18536, 141316, 1112382, 8496454, 52624689, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 9, 15, 22, 30, 39, ...
0, 26, 60, 103, 156, 220, 296, ...
0, 218, 504, 870, 1329, 1895, 2583, ...
0, 2151, 4946, 8511, 12988, 18536, 25332, ...
0, 23854, 54430, 93070, 141316, 200930, 273915, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*a(n-j, 2*j)));
A213591
G.f. A(x) satisfies A( x - A(x)^2 ) = x.
Original entry on oeis.org
1, 1, 4, 24, 178, 1512, 14152, 142705, 1528212, 17211564, 202460400, 2474708496, 31310415376, 408815254832, 5495451727376, 75907303147652, 1075685334980240, 15618612118252960, 232102241507321384, 3526880759915999016, 54755450619399484512, 867928449982022915984
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
where A(x) = x + A(A(x))^2:
A(A(x)) = x + 2*x^2 + 10*x^3 + 69*x^4 + 568*x^5 + 5250*x^6 + 52792*x^7 +...
A(A(x))^2 = x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
The g.f. satisfies the series:
A(x) = x + A(x)^2 + d/dx A(x)^4/2! + d^2/dx^2 A(x)^6/3! + d^3/dx^3 A(x)^8/4! +...
Logarithmic series:
log(A(x)/x) = A(x)^2/x + [d/dx A(x)^4/x]/2! + [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! +...
Also, A(x) = x*G(A(x)^2/x) where G(x) = x/A(x/G(x)^2) is the g.f. of A212411:
G(x) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 235*x^5 + 1792*x^6 + 15261*x^7 +...
Also, A(x)^2 = x*F(A(x)) where F(x) is the g.f. of A213628:
F(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 616*x^6 + 5072*x^7 + 46013*x^8 +...
-
terms = 22; A[] = 0; Do[A[x] = x + A[A[x]]^2 + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 09 2018 *)
-
{a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^2+x*O(x^n))); polcoeff(A, n))}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(2*m)/x)/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1,21,print1(a(n),", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 2*j)));
a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025
A088714
G.f. satisfies A(x) = 1 + x*A(x)^2*A(x*A(x)).
Original entry on oeis.org
1, 1, 3, 13, 69, 419, 2809, 20353, 157199, 1281993, 10963825, 97828031, 907177801, 8716049417, 86553001779, 886573220093, 9351927111901, 101447092428243, 1130357986741545, 12923637003161409, 151479552582252239
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 + 419*x^5 + 2809*x^6 +...
The g.f. A(x) satisfies:
x*A(x) = x + x^2*A(x) + d/dx x^4*A(x)^2/2! + d^2/dx^2 x^6*A(x)^3/3! + d^3/dx^3 x^8*A(x)^4/4! +...
The logarithm of the g.f. is given by:
log(A(x)) = x*A(x) + d/dx x^3*A(x)^2/2! + d^2/dx^2 x^5*A(x)^3/3! + d^3/dx^3 x^7*A(x)^4/4! + d^4/dx^4 x^9*A(x)^5/5! +...
From _Paul D. Hanna_, Apr 16 2007: (Start)
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A*B;
B = A + x*B*C;
C = B + x*C*D;
D = C + x*D*E;
E = D + x*E*F ; ...
where variables B,C,D,E,..., are formed from successive iterations of x*A(x):
B = A(x)*A(x*A(x)), C = B*A(x*B), D = C*A(x*C), E = D*A(x*D), ...;
more explicilty,
B = 1 + 2*x + 8*x^2 + 42*x^3 + 258*x^4 + 1764*x^5 + 13070*x^6 +...,
C = 1 + 3*x + 15*x^2 + 93*x^3 + 655*x^4 + 5039*x^5 + 41453*x^6 +...,
D = 1 + 4*x + 24*x^2 + 172*x^3 + 1372*x^4 + 11796*x^5 +...,
E = 1 + 5*x + 35*x^2 + 285*x^3 + 2545*x^4 + 24255*x^5 +...,
... (End)
Related expansions:
A(x*A(x)) = 1 + x + 4*x^2 + 22*x^3 + 142*x^4 + 1016*x^5 + 7838*x^6 + 64174*x^7 + 552112*x^8 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1054*x^5 + 7039*x^6 + 50632*x^7 + 387613*x^8 +...
d/dx x^4*A(x)^2/2! = 2*x^3 + 5*x^4 + 21*x^5 + 112*x^6 + 692*x^7 + 4743*x^8 +...
d^2/dx^2 x^6*A(x)^3/3! = 5*x^4 + 21*x^5 + 112*x^6 + 696*x^7 + 4815*x^8 +...
d^3/dx^3 x^8*A(x)^4/4! = 14*x^5 + 84*x^6 + 540*x^7 + 3795*x^8 +...
d^4/dx^4 x^10*A(x)^5/5! = 42*x^6 + 330*x^7 + 2475*x^8 + 19305*x^9 +...
...
d^(n-1)/dx^(n-1) x^(2*n)*A(x)^n/n! = A000108(n)*x^(n+1) +...
-
m = 21; A[] = 1; Do[A[x] = 1 + x A[x]^2 A[x A[x]] + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n) = my(A); if( n<0, 0, n++; A = x + O(x^2); for(i=2, n, A = x / (1 - subst(A, x, A))); polcoeff(A, n))}; /* Michael Somos, May 21 2005 */
-
{a(n)=local(A); if(n<0, 0, A=1+x+O(x^2); for(i=1,n, A=1/(1-x*A*subst(A,x,x*A)));polcoeff(A,n))}
-
{a(n)=local(A); if(n<0, 0, A=1+x+O(x^2);for(i=0,n, A=(1/x)*serreverse(x-x^2*A));polcoeff(A,n))}
-
{a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n+k+m,k)/(n+k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
-
/* n-th Derivative: */
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
/* G.f.: [Paul D. Hanna, Dec 18 2010] */
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*A^m/m!))+x*O(x^n))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* n-th Derivative: */
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
/* G.f.: [Paul D. Hanna, May 31 2012] */
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=1+(1/x)*sum(m=1, n+1, Dx(m-1, x^(2*m)*A^m/m!))+x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A087949
G.f. satisfies A(x) = 1 + x*A(x*A(x)).
Original entry on oeis.org
1, 1, 1, 2, 5, 16, 59, 246, 1131, 5655, 30428, 174835, 1066334, 6870542, 46581883, 331237074, 2463361903, 19112314727, 154364077009, 1295325828045, 11273167827343, 101589943242179, 946577526626181, 9107029927925714, 90359115887726302, 923509462029444933
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 +...
A(xA(x)) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 59*x^5 +...
Logarithmic series:
log(A(x)) = x/A(x) + [d/dx x^3*A(x)^2]*A(x)^(-4)/2! + [d^2/dx^2 x^5*A(x)^3]*A(x)^(-6)/3! + [d^3/dx^3 x^7*A(x)^4]*A(x)^(-8)/4! +...
Let G(x) = x*A(x) then
x = G(x*[1 - G(x) + 2*G(x)^2 - 5*G(x)^3 + 14*G(x)^4 - 42*G(x)^5 +-...])
where the unsigned coefficients are the Catalan numbers (A000108).
-
A:= proc(n) option remember; `if`(n=0, 1, (T->
unapply(convert(series(1+x*T(x*T(x)), x, n+1)
, polynom), x))(A(n-1)))
end:
a:= n-> coeff(A(n)(x), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, May 15 2016
-
a[n_] := (A=x; If[n<1, 0, For[i=1, i <= n, i++, A = InverseSeries[2*(x/(1 + Sqrt[1 + 4*A + x*O[x]^n]))]]]; SeriesCoefficient[A, {x, 0, n}]); Array[a, 26] (* Jean-François Alcover, Oct 04 2016, adapted from PARI *)
-
{a(n)=my(A=x); if(n<1, 0, for(i=1,n,A=serreverse(2*x/(1 + sqrt(1+4*A +x*O(x^n))))); polcoeff(A, n))}
-
{a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n-k+m,k)/(n-k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
-
/* n-th Derivative: */
{Dx(n,F)=my(D=F);for(i=1,n,D=deriv(D));D}
/* G.f. */
{a(n)=my(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=0,n,Dx(m,x^(2*m+1)*A^(m+1))*A^(-2*m-2)/(m+1)!)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 18 2010
A091713
G.f. satisfies A(x) = x + x*A(A(A(x))).
Original entry on oeis.org
1, 1, 3, 15, 99, 781, 7001, 69253, 742071, 8506775, 103411463, 1324477033, 17785238513, 249432247233, 3642471258187, 55246757713367, 868523130653947, 14127076257342933, 237386074703124457, 4115341407421082869, 73516094755096807279, 1351801707136238290351
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 15*x^4 + 99*x^5 + 781*x^6 +...
From _Paul D. Hanna_, Apr 16 2007:
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + xC;
B = A*(1 + xD);
C = B*(1 + xE);
D = C*(1 + xF);
E = D*(1 + xG) ; ...
The solution to the variables in the system of equations are
A=A(x), B=A(A(x)), C=A(A(A(x))), D=A(A(A(A(x)))), etc., where:
A(x) = x + x^2 + 3*x^3 + 15*x^4 + 99*x^5 + 781*x^6 + 7001*x^7 +...
A(A(x)) = x + 2*x^2 + 8*x^3 + 46*x^4 + 330*x^5 + 2756*x^6 +...
A(A(A(x))) = x + 3*x^2 + 15*x^3 + 99*x^4 + 781*x^5 + 7001*x^6 +...
A(A(A(A(x)))) = x + 4*x^2 + 24*x^3 + 180*x^4 + 1564*x^5 +...
A(A(A(A(A(x))))) = x + 5*x^2 + 35*x^3 + 295*x^4 + 2815*x^5 +...
ALTERNATE GENERATING METHOD.
The g.f. A(x) equals the sum of products of even iterations of A(x):
A(x) = x + x*A_2(x) + x*A_2(x)*A_4(x) + x*A_2(x)*A_4(x)*A_6(x) + x*A_2(x)*A_4(x)*A_6(x)*A_8(x) +...+ Product_{k=0..n} A_{2*k}(x) +...
where A_n(x) = A_{n-1}(A(x)) is the n-th iteration of A(x) with A_0(x)=x.
-
Nest[x + x (# /. x -> # /. x -> #) &, O[x], 30][[3]] (* Vladimir Reshetnikov, Aug 08 2019 *)
-
{a(n)=local(A);A=x+x^2;for(i=3,n, A=x+x*subst(A,x,subst(A,x,A))+x*O(x^n)); polcoeff(A,n,x)}
-
/* Define the n-th iteration of F: */
{ITERATE(F,n,p)=local(G=x);for(i=1,n,G=subst(F,x,G+x*O(x^p)));G}
/* A(x) equals the sum of products of even iterations of A(x): */
{a(n)=local(A=x);for(i=1,n,A=sum(m=0,n-1,prod(k=0,m,ITERATE(A,2*k,n)+x*O(x^n))));polcoeff(A,n)}
A139702
G.f. satisfies: x = A( x + A(x)^2 ).
Original entry on oeis.org
1, -1, 4, -24, 178, -1512, 14152, -142705, 1528212, -17211564, 202460400, -2474708496, 31310415376, -408815254832, 5495451727376, -75907303147652, 1075685334980240, -15618612118252960, 232102241507321384, -3526880759915999016
Offset: 1
G.f.: A(x) = x - x^2 + 4*x^3 - 24*x^4 + 178*x^5 - 1512*x^6 +-...
A(x)^2 = x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 - 3572*x^7 +-...
where A(x + A(x)^2) = x.
Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then:
G(x) = x + x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+... and
G(G(x)) = x + 2*x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+...
so that G(x) = G(G(x)) - x^2 = g.f. of A138740.
Logarithmic series:
log(A(x)/x) = -A(x)^2/x + [d/dx A(x)^4/x]/2! - [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! -+...
-
nmax = 20; sol = {a[1] -> 1}; nmin = Length[sol]+1;
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[x - A[x + A[x]^2] + O[x]^(n+1), x][[nmin;;]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nmin, nmax}];
a /@ Range[nmax] /. sol (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=x); if(n<1, 0, for(i=1,n, A=serreverse(x + (A+x*O(x^n))^2)); polcoeff(A, n))}
-
/* n-th Derivative: */
{Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D}
/* G.f.: [Paul D. Hanna, Dec 18 2010] */
{a(n)=local(A=x-x^2+x*O(x^n));for(i=1,n,
A=x*exp(sum(m=0,n,(-1)^(m+1)*Dx(m,A^(2*m+2)/x)/(m+1)!)+x*O(x^n)));polcoeff(A,n)}
A088717
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(x*A(x)^2).
Original entry on oeis.org
1, 1, 3, 14, 84, 596, 4785, 42349, 406287, 4176971, 45640572, 526788153, 6392402793, 81247489335, 1078331283648, 14907041720241, 214187010762831, 3192620516380376, 49287883925072010, 786925082232918304, 12976244331714379149, 220728563512663520510
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 84*x^4 + 596*x^5 + 4785*x^6 +...
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A*B;
B = A*(1 + x*B*C);
C = B*(1 + x*C*D);
D = C*(1 + x*D*E);
E = D*(1 + x*E*F); ...
where B(x) = A(x)*A(x*A(x)^2), C(x) = A(x)*B(x*A(x)^2), D(x) = A(x)*C(x*A(x)^2), ...
Expansions of a few of the functions described above begin:
B(x) = 1 + 2*x + 9*x^2 + 55*x^3 + 402*x^4 + 3328*x^5 + 30312*x^6 +...
C(x) = 1 + 3*x + 18*x^2 + 138*x^3 + 1218*x^4 + 11856*x^5 + 124467*x^6 +...
D(x) = 1 + 4*x + 30*x^2 + 278*x^3 + 2901*x^4 + 32846*x^5 + 395913*x^6 +...
ALTERNATE GENERATING METHOD.
Suppose functions A=A(x), B=B(x), C=C(x), etc., satisfy:
A = 1 + x*A^2*B,
B = 1 + x*(A*B)^2*C,
C = 1 + x*(A*B*C)^2*D,
D = 1 + x*(A*B*C*D)^2*E, etc.,
then B(x) = A(x*A(x)^2), C(x) = B(x*A(x)^2), D(x) = C(x*A(x)^2), etc.,
where A(x) = 1 + x*A(x)^2*A(x*A(x)^2) is the g.f. of this sequence.
Expansions of a few of the functions described above begin:
B(x) = 1 + x + 5*x^2 + 33*x^3 + 256*x^4 + 2223*x^5 + 21058*x^6 +...
C(x) = 1 + x + 7*x^2 + 60*x^3 + 578*x^4 + 6045*x^5 + 67421*x^6 +...
D(x) = 1 + x + 9*x^2 + 95*x^3 + 1098*x^4 + 13526*x^5 + 175176*x^6 +...
-
m = 22; A[] = 0; Do[A[x] = 1 + x A[x]^2 A[x A[x]^2] + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 07 2019 *)
-
{a(n)=local(A=1+x);for(i=0,n,A=1+x*A^2*subst(A,x,x*A^2+x*O(x^n)));polcoeff(A,n)}
-
/* a(n) = [x^n] (1+x*A(x))^(2*n+1)/(2*n+1): */
{a(n)=local(A=1+x); for(i=0, n, A=sum(m=0,n,polcoeff((1+x*A+x*O(x^m))^(2*m+1)/(2*m+1),m)*x^m)+x*O(x^n));polcoeff(A,n)}
-
{a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(2*n+m, k)/(2*n+m)*a(n-k, k))))}
A120970
G.f. A(x) satisfies A(x/A(x)^2) = 1 + x ; thus A(x) = 1 + Series_Reversion(x/A(x)^2).
Original entry on oeis.org
1, 1, 2, 9, 60, 504, 4946, 54430, 655362, 8496454, 117311198, 1711459903, 26228829200, 420370445830, 7021029571856, 121859518887327, 2192820745899978, 40831103986939664, 785429260324068156, 15585831041632684997, 318649154587152781210, 6704504768568697046504
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 60*x^4 + 504*x^5 + 4946*x^6 + ...
Related expansions.
A(x)^2 = 1 + 2*x + 5*x^2 + 22*x^3 + 142*x^4 + 1164*x^5 + 11221*x^6 + ...
A(A(x)-1) = 1 + x + 4*x^2 + 26*x^3 + 218*x^4 + 2151*x^5 + 23854*x^6 + ...
A(A(x)-1)^2 = 1 + 2*x + 9*x^2 + 60*x^3 + 504*x^4 + 4946*x^5 + ...
x/A(x)^2 = x - 2*x^2 - x^3 - 10*x^4 - 73*x^5 - 662*x^6 - 6842*x^7 - ...
Series_Reversion(x/A(x)^2) = x + 2*x^2 + 9*x^3 + 60*x^4 + 504*x^5 + 4946*x^6 + ...
To illustrate the formula a(n) = [x^(n-1)] 2*A(x)^(2*n)/(2*n),
form a table of coefficients in A(x)^(2*n) as follows:
A^2: [(1), 2, 5, 22, 142, 1164, 11221, 121848, ...];
A^4: [ 1, (4), 14, 64, 397, 3116, 29002, 306468, ...];
A^6: [ 1, 6, (27), 134, 825, 6270, 56492, 580902, ...];
A^8: [ 1, 8, 44, (240), 1502, 11200, 98144, 983016, ...];
A^10: [ 1, 10, 65, 390, (2520), 18672, 160115, 1565260, ...];
A^12: [ 1, 12, 90, 592, 3987, (29676), 250730, 2399388, ...];
A^14: [ 1, 14, 119, 854, 6027, 45458, (381010), 3582266, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[2/2*(1), 2/4*(4), 2/6*(27), 2/8*(240), 2/10*(2520), 2/12*(29676), ...].
-
terms = 21; A[] = 1; Do[A[x] = 1 + x*A[A[x] - 1]^2 + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
-
{a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^2))[ #A]);A[n+1]}
for(n=0,30,print1(a(n),", "))
-
/* This sequence is generated when k=2, m=0: A(x/A(x)^k) = 1 + x*A(x)^m */ {a(n,k=2,m=0)=local(A=sum(i=0,n-1,a(i,k,m)*x^i));if(n==0,1,polcoeff((m+k)/(m+k*n)*A^(m+k*n),n-1))} \\ Paul D. Hanna, Nov 16 2008
for(n=0,30,print1(a(n),", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*b(n-j, 2*j)));
a(n) = if(n==0, 1, b(n-1, 2)); \\ Seiichi Manyama, Jun 04 2025
A120973
G.f. A(x) satisfies A(x) = 1 + x*A(x)^3 * A(x*A(x)^3)^3.
Original entry on oeis.org
1, 1, 6, 60, 776, 11802, 201465, 3759100, 75404151, 1608036861, 36172106112, 853346084343, 21021015647574, 538868533164995, 14336235065928966, 394957784033440194, 11246848201518516044, 330520280036501809758
Offset: 0
-
{a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^3))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/3));A[n+1]}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+k, j)/(3*n+k)*a(n-j, 3*j))); \\ Seiichi Manyama, Mar 01 2025
A120975
G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 * A(x*A(x)^4)^4.
Original entry on oeis.org
1, 1, 8, 108, 1888, 38798, 894308, 22517256, 609112756, 17507219813, 530495478900, 16850219461706, 558608940038072, 19263089278722726, 689119527976265884, 25519081467271687938, 976447764170903902364
Offset: 0
-
{a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^4))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/4));A[n+1]}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(4*n+k, j)/(4*n+k)*a(n-j, 4*j))); \\ Seiichi Manyama, Mar 01 2025
Showing 1-10 of 15 results.
Comments