cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A141117 G.f.: A(x) = G(G(x)) = G(x)*[1 + A(A(x))] where G(x) = x + x*G(G(G(x))) = g.f. of A091713.

Original entry on oeis.org

1, 2, 8, 46, 330, 2756, 25782, 263866, 2909092, 34181138, 424730866, 5549236120, 75895955810, 1082808876274, 16069706031016, 247501424330182, 3948322598675930, 65130737179097436, 1109339652229852966
Offset: 1

Views

Author

Paul D. Hanna, Jun 04 2008

Keywords

Examples

			G.f.: A(x) = G(G(x)) such that G(x) = A(x)/[1 + A(A(x))] where
G(x) = x + x^2 + 3*x^3 + 15*x^4 + 99*x^5 + 781*x^6 + 7001*x^7 +...
A(x) = x + 2*x^2 + 8*x^3 + 46*x^4 + 330*x^5 + 2756*x^6 + 25782*x^7 +...
A(A(x)) = x + 4*x^2 + 24*x^3 + 180*x^4 + 1564*x^5 + 15140*x^6 +...
		

Crossrefs

Cf. A091713.

Programs

  • PARI
    {a(n)=local(A); A=x+x^2; for(i=3, n, A=x+x*subst(A, x, subst(A, x, A))+x*O(x^n)); polcoeff(subst(A, x, A), n, x)}

Formula

G.f. A(x) satisfies: G( x/(1 + A(x)) ) = x where G(x) = g.f. of A091713.

A213591 G.f. A(x) satisfies A( x - A(x)^2 ) = x.

Original entry on oeis.org

1, 1, 4, 24, 178, 1512, 14152, 142705, 1528212, 17211564, 202460400, 2474708496, 31310415376, 408815254832, 5495451727376, 75907303147652, 1075685334980240, 15618612118252960, 232102241507321384, 3526880759915999016, 54755450619399484512, 867928449982022915984
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2012

Keywords

Comments

Unsigned version of A139702.
Self-convolution is A276370.
Row sums of triangle A277295.

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
where A(x) = x + A(A(x))^2:
A(A(x)) = x + 2*x^2 + 10*x^3 + 69*x^4 + 568*x^5 + 5250*x^6 + 52792*x^7 +...
A(A(x))^2 = x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
The g.f. satisfies the series:
A(x) = x + A(x)^2 + d/dx A(x)^4/2! + d^2/dx^2 A(x)^6/3! + d^3/dx^3 A(x)^8/4! +...
Logarithmic series:
log(A(x)/x) = A(x)^2/x + [d/dx A(x)^4/x]/2! + [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! +...
Also, A(x) = x*G(A(x)^2/x) where G(x) = x/A(x/G(x)^2) is the g.f. of A212411:
G(x) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 235*x^5 + 1792*x^6 + 15261*x^7 +...
Also, A(x)^2 = x*F(A(x)) where F(x) is the g.f. of A213628:
F(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 616*x^6 + 5072*x^7 + 46013*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 22; A[] = 0; Do[A[x] = x + A[A[x]]^2 + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 09 2018 *)
  • PARI
    {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^2+x*O(x^n))); polcoeff(A, n))}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(2*m)/x)/m!)+x*O(x^n))); polcoeff(A, n)}
    for(n=1,21,print1(a(n),", "))
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 2*j)));
    a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025

Formula

G.f. satisfies:
(1) A(x) = x + A(A(x))^2.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n) / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n)/x / n! ).
(4) A(x) = x*G(A(x)^2/x) where G(x) = 1 + x*G(1-1/G(x))^2 is the g.f. of A212411.
(5) A(x)^2 = x*F(A(x)) where F(x) = 1 - (x^2/F(x))/F(x^2/F(x)) is the g.f. of A213628.
(6) x = A(A( x-x^2 - A(x)^2 )). - Paul D. Hanna, Jul 01 2012
(7) A(x) is the unique solution to variable A in the infinite system of simultaneous equations starting with:
A = x + B^2;
B = A + C^2;
C = B + D^2;
D = C + E^2; ...
where B = A(A(x)), C = A(A(A(x))), D = A(A(A(A(x)))), etc.
...
a(n) = Sum_{k=0..n-1} A277295(n,k).
From Seiichi Manyama, Jun 05 2025: (Start)
Let b(n,k) = [x^n] (A(x)/x)^k.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(n+j+k,j)/(n+j+k) * b(n-j,2*j).
a(n) = b(n-1,1). (End)

A088714 G.f. satisfies A(x) = 1 + x*A(x)^2*A(x*A(x)).

Original entry on oeis.org

1, 1, 3, 13, 69, 419, 2809, 20353, 157199, 1281993, 10963825, 97828031, 907177801, 8716049417, 86553001779, 886573220093, 9351927111901, 101447092428243, 1130357986741545, 12923637003161409, 151479552582252239
Offset: 0

Views

Author

Paul D. Hanna, Oct 12 2003, May 22 2008

Keywords

Comments

Equals row sums of triangle A291820.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 + 419*x^5 + 2809*x^6 +...
The g.f. A(x) satisfies:
x*A(x) = x + x^2*A(x) + d/dx x^4*A(x)^2/2! + d^2/dx^2 x^6*A(x)^3/3! + d^3/dx^3 x^8*A(x)^4/4! +...
The logarithm of the g.f. is given by:
log(A(x)) = x*A(x) + d/dx x^3*A(x)^2/2! + d^2/dx^2 x^5*A(x)^3/3! + d^3/dx^3 x^7*A(x)^4/4! + d^4/dx^4 x^9*A(x)^5/5! +...
From _Paul D. Hanna_, Apr 16 2007: (Start)
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A*B;
B = A + x*B*C;
C = B + x*C*D;
D = C + x*D*E;
E = D + x*E*F ; ...
where variables B,C,D,E,..., are formed from successive iterations of x*A(x):
B = A(x)*A(x*A(x)), C = B*A(x*B), D = C*A(x*C), E = D*A(x*D), ...;
more explicilty,
B = 1 + 2*x + 8*x^2 + 42*x^3 + 258*x^4 + 1764*x^5 + 13070*x^6 +...,
C = 1 + 3*x + 15*x^2 + 93*x^3 + 655*x^4 + 5039*x^5 + 41453*x^6 +...,
D = 1 + 4*x + 24*x^2 + 172*x^3 + 1372*x^4 + 11796*x^5 +...,
E = 1 + 5*x + 35*x^2 + 285*x^3 + 2545*x^4 + 24255*x^5 +...,
... (End)
Related expansions:
A(x*A(x)) = 1 + x + 4*x^2 + 22*x^3 + 142*x^4 + 1016*x^5 + 7838*x^6 + 64174*x^7 + 552112*x^8 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1054*x^5 + 7039*x^6 + 50632*x^7 + 387613*x^8 +...
d/dx x^4*A(x)^2/2! = 2*x^3 + 5*x^4 + 21*x^5 + 112*x^6 + 692*x^7 + 4743*x^8 +...
d^2/dx^2 x^6*A(x)^3/3! = 5*x^4 + 21*x^5 + 112*x^6 + 696*x^7 + 4815*x^8 +...
d^3/dx^3 x^8*A(x)^4/4! = 14*x^5 + 84*x^6 + 540*x^7 + 3795*x^8 +...
d^4/dx^4 x^10*A(x)^5/5! = 42*x^6 + 330*x^7 + 2475*x^8 + 19305*x^9 +...
...
d^(n-1)/dx^(n-1) x^(2*n)*A(x)^n/n! = A000108(n)*x^(n+1) +...
		

Crossrefs

Apart from signs, same as A067145. - Philippe Deléham, Jun 18 2006

Programs

  • Mathematica
    m = 21; A[] = 1; Do[A[x] = 1 + x A[x]^2 A[x A[x]] + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n++; A = x + O(x^2); for(i=2, n, A = x / (1 - subst(A, x, A))); polcoeff(A, n))}; /* Michael Somos, May 21 2005 */
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x+O(x^2); for(i=1,n, A=1/(1-x*A*subst(A,x,x*A)));polcoeff(A,n))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x+O(x^2);for(i=0,n, A=(1/x)*serreverse(x-x^2*A));polcoeff(A,n))}
    
  • PARI
    {a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n+k+m,k)/(n+k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
    
  • PARI
    /* n-th Derivative: */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    /* G.f.: [Paul D. Hanna, Dec 18 2010] */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*A^m/m!))+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* n-th Derivative: */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    /* G.f.: [Paul D. Hanna, May 31 2012] */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=1+(1/x)*sum(m=1, n+1, Dx(m-1, x^(2*m)*A^m/m!))+x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies:
(1) A(x) = (1/x)*Series_Reversion(x - x^2*A(x)).
(2) A(x) = 1 + (1/x)*Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n)*A(x)^n/n!.
(3) A(x) = exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1)*A(x)^n/n! ).
(4) A(x) = 1/(1 - x*A(x)*A(x*A(x))).
(5) A(x) = f(x*A(x)) = (1-1/f(x))/x where f(x) is the g.f. of A088713.
Given g.f. A(x), then B(x) = x*A(x) satisfies 0 = f(x, B(x), B(B(x))) where f(a0, a1, a2) = a0 - a1 + a1*a2. - Michael Somos, May 21 2005
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+k+m,k)/(n+k+m) * a(n-k,k).
(End)
a(n) = Sum_{k=0..n} A291820(n+1,k). - Paul D. Hanna, Sep 01 2017

A087949 G.f. satisfies A(x) = 1 + x*A(x*A(x)).

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 59, 246, 1131, 5655, 30428, 174835, 1066334, 6870542, 46581883, 331237074, 2463361903, 19112314727, 154364077009, 1295325828045, 11273167827343, 101589943242179, 946577526626181, 9107029927925714, 90359115887726302, 923509462029444933
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2003

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 +...
A(xA(x)) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 59*x^5 +...
Logarithmic series:
log(A(x)) = x/A(x) + [d/dx x^3*A(x)^2]*A(x)^(-4)/2! + [d^2/dx^2 x^5*A(x)^3]*A(x)^(-6)/3! + [d^3/dx^3 x^7*A(x)^4]*A(x)^(-8)/4! +...
Let G(x) = x*A(x) then
x = G(x*[1 - G(x) + 2*G(x)^2 - 5*G(x)^3 + 14*G(x)^4 - 42*G(x)^5 +-...])
where the unsigned coefficients are the Catalan numbers (A000108).
		

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; `if`(n=0, 1, (T->
          unapply(convert(series(1+x*T(x*T(x)), x, n+1)
          , polynom), x))(A(n-1)))
        end:
    a:= n-> coeff(A(n)(x), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 15 2016
  • Mathematica
    a[n_] := (A=x; If[n<1, 0, For[i=1, i <= n, i++, A = InverseSeries[2*(x/(1 + Sqrt[1 + 4*A + x*O[x]^n]))]]]; SeriesCoefficient[A, {x, 0, n}]); Array[a, 26] (* Jean-François Alcover, Oct 04 2016, adapted from PARI *)
  • PARI
    {a(n)=my(A=x); if(n<1, 0, for(i=1,n,A=serreverse(2*x/(1 + sqrt(1+4*A +x*O(x^n))))); polcoeff(A, n))}
    
  • PARI
    {a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n-k+m,k)/(n-k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
    
  • PARI
    /* n-th Derivative: */
    {Dx(n,F)=my(D=F);for(i=1,n,D=deriv(D));D}
    /* G.f. */
    {a(n)=my(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=0,n,Dx(m,x^(2*m+1)*A^(m+1))*A^(-2*m-2)/(m+1)!)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 18 2010

Formula

Let G(x) = x*A(x), then the following statements hold:
* G(x) = x*(1 + sqrt(1 + 4*G(G(x))))/2;
* G(x) = Series_Reversion[2*x/(1 + sqrt(1 + 4*G(x)))].
- Paul D. Hanna, May 15 2008
From Paul D. Hanna, Apr 16 2007: (Start)
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + xB;
B = 1 + xAC;
C = 1 + xABD;
D = 1 + xABCE;
E = 1 + xABCDF ; ... (End)
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n, then
a(n,m) = Sum_{k=0..n} m*C(n-k+m,k)/(n-k+m) * a(n-k,k) with a(0,m)=1.
(End)
G.f. satisfies: A(x) = exp( Sum_{n>=0} [d^n/dx^n x^(2n+1)*A(x)^(n+1)] *A(x)^(-2n-2)/(n+1)! ). - Paul D. Hanna, Dec 18 2010

Extensions

Edited by N. J. A. Sloane, May 19 2008

A120971 G.f. A(x) satisfies A(x) = 1 + x*A(x)^2 * A( x*A(x)^2 )^2.

Original entry on oeis.org

1, 1, 4, 26, 218, 2151, 23854, 289555, 3783568, 52624689, 772928988, 11918181144, 192074926618, 3224153299106, 56213565222834, 1015694652332437, 18982833869517376, 366384235565593176, 7292660345274942402
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 218*x^4 + 2151*x^5 + 23854*x^6 +...
From _Paul D. Hanna_, Apr 16 2007: G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*B^2;
B = A*(1 + x*C^2);
C = B*(1 + x*D^2);
D = C*(1 + x*E^2);
E = D*(1 + x*F^2); ...
The above series begin:
B(x) = 1 + 2*x + 11*x^2 + 87*x^3 + 841*x^4 + 9288*x^5 + 113166*x^6 +...
C(x) = 1 + 3*x + 21*x^2 + 198*x^3 + 2204*x^4 + 27431*x^5 + 371102*x^6 +...
D(x) = 1 + 4*x + 34*x^2 + 374*x^3 + 4747*x^4 + 66350*x^5 + 996943*x^6 +...
E(x) = 1 + 5*x + 50*x^2 + 630*x^3 + 9015*x^4 + 140510*x^5 + 2334895*x^6 +...
F(x) = 1 + 6*x + 69*x^2 + 981*x^3 + 15658*x^4 + 270016*x^5 + 4933294*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    m = 19; A[] = 0; Do[A[x] = 1 + x A[x]^2 A[x A[x]^2]^2 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 07 2019 *)
  • PARI
    {a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^2))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/2));A[n+1]}
    
  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*a(n-j, 2*j))); \\ Seiichi Manyama, Mar 01 2025

Formula

G.f. A(x) satisfies:
(1) A(x) = G(G(x)-1),
(2) A(G(x)-1) = G(A(x)-1),
(3) A(x) = G(x*A(x)^2),
(4) A(x/G(x)^2) = G(x),
where G(x) is the g.f. of A120970 and satisfies G(x/G(x)^2) = 1 + x.
G.f. A(x) = F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+1)^2) for n>0 with F(x,0)=1. - Paul D. Hanna, Apr 16 2007
Let B(x) = Sum_{n>=0} a(n)*x^(2*n+1), then B( x/(1+B(x)^2) ) = x. - Paul D. Hanna, Oct 30 2013
From Seiichi Manyama, Mar 01 2025: (Start)
Let a(n,k) = [x^n] A(x)^k.
a(n,0) = 0^n; a(n,k) = k * Sum_{j=0..n} binomial(2*n+k,j)/(2*n+k) * a(n-j,2*j). (End)

A139702 G.f. satisfies: x = A( x + A(x)^2 ).

Original entry on oeis.org

1, -1, 4, -24, 178, -1512, 14152, -142705, 1528212, -17211564, 202460400, -2474708496, 31310415376, -408815254832, 5495451727376, -75907303147652, 1075685334980240, -15618612118252960, 232102241507321384, -3526880759915999016
Offset: 1

Views

Author

Paul D. Hanna, Apr 30 2008, May 20 2008

Keywords

Comments

Signed version of A213591.

Examples

			G.f.: A(x) = x - x^2 + 4*x^3 - 24*x^4 + 178*x^5 - 1512*x^6 +-...
A(x)^2 = x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 - 3572*x^7 +-...
where A(x + A(x)^2) = x.
Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then:
G(x) = x + x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+... and
G(G(x)) = x + 2*x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+...
so that G(x) = G(G(x)) - x^2 = g.f. of A138740.
Logarithmic series:
log(A(x)/x) = -A(x)^2/x + [d/dx A(x)^4/x]/2! - [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! -+...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; sol = {a[1] -> 1}; nmin = Length[sol]+1;
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[x - A[x + A[x]^2] + O[x]^(n+1), x][[nmin;;]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nmin, nmax}];
    a /@ Range[nmax] /. sol (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=x); if(n<1, 0, for(i=1,n, A=serreverse(x + (A+x*O(x^n))^2)); polcoeff(A, n))}
    
  • PARI
    /* n-th Derivative: */
    {Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D}
    /* G.f.: [Paul D. Hanna, Dec 18 2010] */
    {a(n)=local(A=x-x^2+x*O(x^n));for(i=1,n,
    A=x*exp(sum(m=0,n,(-1)^(m+1)*Dx(m,A^(2*m+2)/x)/(m+1)!)+x*O(x^n)));polcoeff(A,n)}

Formula

Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then G(x) = G(G(x)) - x^2 = g.f. of A138740.
G.f. satisfies: A(x) = x*G(-A(x)^2/x) where G(x) = 1 + x*G(1-1/G(x))^2 is the g.f. of A212411.
G.f.: A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:
A = 1 - x*B^2;
B = A - x*C^2;
C = B - x*D^2;
D = C - x*E^2;
E = D - x*F^2; ...
G.f. satisfies: A(x) = x*exp( Sum_{n>=0} (-1)^(n+1)*[d^n/dx^n A(x)^(2n+2)/x]/(n+1)! ). [Paul D. Hanna, Dec 18 2010]

A088717 G.f. satisfies: A(x) = 1 + x*A(x)^2*A(x*A(x)^2).

Original entry on oeis.org

1, 1, 3, 14, 84, 596, 4785, 42349, 406287, 4176971, 45640572, 526788153, 6392402793, 81247489335, 1078331283648, 14907041720241, 214187010762831, 3192620516380376, 49287883925072010, 786925082232918304, 12976244331714379149, 220728563512663520510
Offset: 0

Views

Author

Paul D. Hanna, Oct 12 2003 and Mar 10 2007

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 84*x^4 + 596*x^5 + 4785*x^6 +...
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A*B;
B = A*(1 + x*B*C);
C = B*(1 + x*C*D);
D = C*(1 + x*D*E);
E = D*(1 + x*E*F); ...
where B(x) = A(x)*A(x*A(x)^2), C(x) = A(x)*B(x*A(x)^2),  D(x) = A(x)*C(x*A(x)^2), ...
Expansions of a few of the functions described above begin:
B(x) = 1 + 2*x + 9*x^2 + 55*x^3 + 402*x^4 + 3328*x^5 + 30312*x^6 +...
C(x) = 1 + 3*x + 18*x^2 + 138*x^3 + 1218*x^4 + 11856*x^5 + 124467*x^6 +...
D(x) = 1 + 4*x + 30*x^2 + 278*x^3 + 2901*x^4 + 32846*x^5 + 395913*x^6 +...
ALTERNATE GENERATING METHOD.
Suppose functions A=A(x), B=B(x), C=C(x), etc., satisfy:
A = 1 + x*A^2*B,
B = 1 + x*(A*B)^2*C,
C = 1 + x*(A*B*C)^2*D,
D = 1 + x*(A*B*C*D)^2*E, etc.,
then B(x) = A(x*A(x)^2), C(x) = B(x*A(x)^2), D(x) = C(x*A(x)^2), etc.,
where A(x) = 1 + x*A(x)^2*A(x*A(x)^2) is the g.f. of this sequence.
Expansions of a few of the functions described above begin:
B(x) = 1 + x + 5*x^2 + 33*x^3 + 256*x^4 + 2223*x^5 + 21058*x^6 +...
C(x) = 1 + x + 7*x^2 + 60*x^3 + 578*x^4 + 6045*x^5 + 67421*x^6 +...
D(x) = 1 + x + 9*x^2 + 95*x^3 + 1098*x^4 + 13526*x^5 + 175176*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    m = 22; A[] = 0; Do[A[x] = 1 + x A[x]^2 A[x A[x]^2] + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 07 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=1+x*A^2*subst(A,x,x*A^2+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    /* a(n) = [x^n] (1+x*A(x))^(2*n+1)/(2*n+1): */
    {a(n)=local(A=1+x); for(i=0, n, A=sum(m=0,n,polcoeff((1+x*A+x*O(x^m))^(2*m+1)/(2*m+1),m)*x^m)+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(2*n+m, k)/(2*n+m)*a(n-k, k))))}

Formula

a(n) = coefficient of x^n in (1+x*A(x))^(2*n+1)/(2*n+1) where A(x) = Sum_{n=0} a(n)*x^n.
Recurrence:
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(2n+m,k)/(2n+m) * a(n-k,k). [Paul D. Hanna, Dec 16 2010]
G.f. A(x) = F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n)*F(x,n+1)) for n>0 with F(x,0)=1. - Paul D. Hanna, Apr 16 2007

A140094 G.f. satisfies: A(x) = x/(1 - A(A(A(x)))).

Original entry on oeis.org

1, 1, 4, 25, 199, 1855, 19387, 221407, 2717782, 35455981, 487672243, 7029980797, 105732907498, 1653377947393, 26805765569863, 449568735630517, 7785116448484318, 138980739891821269, 2554369130466577138
Offset: 1

Views

Author

Paul D. Hanna, May 08 2008, May 20 2008

Keywords

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 25*x^4 + 199*x^5 + 1855*x^6 + 19387*x^7 +...
Iterations A_{n+1}(x) = A( A_{n}(x) ) are related as follows.
A_2(x) = 1 - Series_Reversion( A(x) ) / x;
A_3(x) = 1 - x / A(x);
A_4(x) = 1 - A(x) / A_2(x);
A_5(x) = 1 - A_2(x) / A_3(x);
A_6(x) = 1 - A_3(x) / A_4(x); ...
where the iterations of A(x) begin:
A_2(x) = x + 2*x^2 + 10*x^3 + 71*x^4 + 616*x^5 + 6119*x^6 + 67210*x^7 +...;
A_3(x) = x + 3*x^2 + 18*x^3 + 144*x^4 + 1365*x^5 + 14544*x^6 +...;
A_4(x) = x + 4*x^2 + 28*x^3 + 250*x^4 + 2584*x^5 + 29584*x^6 +...;
A_5(x) = x + 5*x^2 + 40*x^3 + 395*x^4 + 4435*x^5 + 54515*x^6 +...;
A_6(x) = x + 6*x^2 + 54*x^3 + 585*x^4 + 7104*x^5 + 93555*x^6 +...;
...
Iterations are also related by continued fractions:
A(x) = x/(1 - A_2(x)/(1 - A_4(x)/(1 - A_6(x)/(1 -...)))) ;
A_2(x) = A(x)/(1 - A_3(x)/(1 - A_5(x)/(1 - A_7(x)/(1 -...)))).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A); if(n<0, 0, n++; A=x+O(x^2); for(i=2, n, A=x/(1-subst(A, x, subst(A, x, A)))); polcoeff(A, n))}

Formula

G.f. A(x) satisfies:
(1) A(x) = Series_Reversion(x - x*A(A(x))).
(2) A(x) = x + Sum_{n=1} d^(n-1)/dx^(n-1) x^n * A(A(x))^n / n!.
(3) A(x) = x*exp( Sum_{n=1} d^(n-1)/dx^(n-1) x^n * A(A(x))^n/x / n! ).
Define A_{n} such that A_{n+1}(x) = A( A_{n}(x) ) with A_0(x) = x,
then A_{n}(x) = A_{n-1}/[1 - A_{n+2}(x)] ;
thus A_{n}(x) = 1 - A_{n-3}(x) / A_{n-2}(x).
G.f. A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:
A = 1 + x*A*C;
B = A + x*B*D;
C = B + x*C*E;
D = C + x*D*F;
E = D + x*E*G; ...

Extensions

Name, formulas, and examples revised by Paul D. Hanna, Feb 03 2013

A140095 G.f. satisfies: A(x) = x/(1 - A(A(A(A(x))))).

Original entry on oeis.org

1, 1, 5, 41, 437, 5513, 78477, 1225865, 20644021, 370334137, 7017055933, 139562915193, 2899946191077, 62722686552841, 1408033260333581, 32729098457253417, 786224322656857941, 19486950945070339801, 497649167866430159197, 13078602790892074110937
Offset: 1

Views

Author

Paul D. Hanna, May 08 2008, May 20 2008

Keywords

Examples

			G.f.: A(x) = x + x^2 + 5*x^3 + 41*x^4 + 437*x^5 + 5513*x^6 + 78477*x^7 +...
Iterations A_{n+1}(x) = A( A_{n}(x) ) are related as follows.
A_2(x) = 1 - Series_Reversion(A_2(x)) / Series_Reversion(A(x));
A_3(x) = 1 - Series_Reversion(A(x)) / x;
A_4(x) = 1 - x / A(x);
A_5(x) = 1 - A(x) / A_2(x);
A_6(x) = 1 - A_2(x) / A_3(x);
A_7(x) = 1 - A_3(x) / A_4(x);
A_8(x) = 1 - A_4(x) / A_5(x); ...
where the iterations of A(x) begin:
A_2(x) = x + 2*x^2 + 12*x^3 + 108*x^4 + 1220*x^5 + 16028*x^6 +...
A_3(x) = x + 3*x^2 + 21*x^3 + 207*x^4 + 2489*x^5 + 34259*x^6 +...
A_4(x) = x + 4*x^2 + 32*x^3 + 344*x^4 + 4408*x^5 + 63776*x^6 +...
A_5(x) = x + 5*x^2 + 45*x^3 + 525*x^4 + 7165*x^5 + 109125*x^6 +...
A_6(x) = x + 6*x^2 + 60*x^3 + 756*x^4 + 10972*x^5 + 175948*x^6 +...
A_7(x) = x + 7*x^2 + 77*x^3 + 1043*x^4 + 16065*x^5 + 271103*x^6 +...
A_8(x) = x + 8*x^2 + 96*x^3 + 1392*x^4 + 22704*x^5 + 402784*x^6 +...
...
Iterations are also related by continued fractions:
A(x) = x/(1 - A_3(x)/(1 - A_6(x)/(1 - A_9(x)/(1 -...)))) ;
A_2(x) = A(x)/(1 - A_4(x)/(1 - A_7(x)/(1 - A_10(x)/(1 -...)))) ;
A_3(x) = A_2(x)/(1 - A_5(x)/(1 - A_8(x)/(1 - A_11(x)/(1 -...)))) ;
A_4(x) = A_3(x)/(1 - A_6(x)/(1 - A_9(x)/(1 - A_12(x)/(1 -...)))) ; ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A); if(n<1, 0, n++; A=x+O(x^2); for(i=2, n,B=subst(A, x, A); A=x/(1-subst(B, x, B))); polcoeff(A, n))}

Formula

G.f. A(x) satisfies:
(1) A(x) = Series_Reversion(x - x*A(A(A(x)))).
(2) A(x) = x + Sum_{n=1} d^(n-1)/dx^(n-1) x^n * A(A(A(x)))^n / n!.
(3) A(x) = x*exp( Sum_{n=1} d^(n-1)/dx^(n-1) x^n * A(A(A(x)))^n/x / n! ).
Define A_{n} such that A_{n+1}(x) = A( A_{n}(x) ) with A_0(x) = x,
then A_{n}(x) = A_{n-1}/[1 - A_{n+3}(x)] ;
thus A_{n}(x) = 1 - A_{n-4}(x) / A_{n-3}(x).
G.f.: A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:
A = 1 + x*A*D;
B = A + x*B*E;
C = B + x*C*F;
D = C + x*D*G;
E = D + x*E*H; ...

A196523 G.f. satisfies A(x) = x + x*A(A(A(A(x)))).

Original entry on oeis.org

1, 1, 4, 28, 262, 2944, 37666, 532276, 8151322, 133562194, 2320621222, 42475263136, 814932467836, 16326188799508, 340479903535258, 7373196169450312, 165453350568966163, 3840489521467649158, 92072430090995120044, 2276807696679096394552
Offset: 1

Views

Author

Paul D. Hanna, Oct 03 2011

Keywords

Comments

Conjecture: a(n) == 1 (mod 3) for n >= 1. - Paul D. Hanna, Dec 01 2024

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 28*x^4 + 262*x^5 + 2944*x^6 + 37666*x^7 +...
Given g.f. A(x), A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*D;
B = A*(1 + x*E);
C = B*(1 + x*F);
D = C*(1 + x*G);
E = D*(1 + x*H); ...
The solution to the variables in the system of equations are:
A=A(x)/x, B=A(A(x))/x, C=A(A(A(x)))/x, D=A(A(A(A(x))))/x, etc.,
where iterations begin:
A(x) = x + x^2 + 4*x^3 + 28*x^4 + 262*x^5 + 2944*x^6 + 37666*x^7 +...
A(A(x)) = x + 2*x^2 + 10*x^3 + 77*x^4 + 760*x^5 + 8846*x^6 + 116140*x^7 +...
A(A(A(x))) = x + 3*x^2 + 18*x^3 + 153*x^4 + 1608*x^5 + 19566*x^6 +...
A(A(A(A(x)))) = x + 4*x^2 + 28*x^3 + 262*x^4 + 2944*x^5 + 37666*x^6 +...
A(A(A(A(A(x))))) = x + 5*x^2 + 40*x^3 + 410*x^4 + 4930*x^5 + 66530*x^6 +...
A(A(A(A(A(A(x)))))) = x + 6*x^2 + 54*x^3 + 603*x^4 + 7752*x^5 + 110484*x^6 +...
ALTERNATE GENERATING METHOD.
The g.f. A(x) equals the sum of products of {3*k}-iterations of A(x):
A(x) = x + x*A_3(x) + x*A_3(x)*A_6(x) + x*A_3(x)*A_6(x)*A_9(x) + x*A_3(x)*A_6(x)*A_9(x)*A_12(x) +...+ Product_{k=0..n} A_{3*k}(x) +...
where A_n(x) = A_{n-1}(A(x)) is the n-th iteration of A(x) with A_0(x)=x.
Related expansions.
x*A_3(x) = x^2 + 3*x^3 + 18*x^4 + 153*x^5 + 1608*x^6 + 19566*x^7 +...
x*A_3(x)*A_6(x) = x^3 + 9*x^4 + 90*x^5 + 1026*x^6 + 13059*x^7 +...
x*A_3(x)*A_6(x)*A_9(x) = x^4 + 18*x^5 + 279*x^6 + 4320*x^7 +...
x*A_3(x)*A_6(x)*A_9(x)*A_12(x) = x^5 + 30*x^6 + 675*x^7 +...
		

Crossrefs

Programs

  • Mathematica
    Nest[x + x (# /. x -> # /. x -> # /. x -> #) &, O[x], 30][[3]] (* Vladimir Reshetnikov, Aug 08 2019 *)
  • PARI
    /* Define the n-th iteration of function F: */
    {ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
    /* A(x) results from nested iterations of shifted series: */
    
  • PARI
    {a(n)=local(A=x); for(i=1,n, A=x+x*ITERATE(4,A, n)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=x); for(i=1,n, A=x+x*sum(m=1,n,prod(k=1,m,ITERATE(3*k,A,n)))); polcoeff(A, n)}

Formula

G.f.: A(x) = A(A(x))/(1 + A(A(A(A(A(x)))))).
G.f.: A(x) = Series_Reversion[ x/(1 + A(A(A(x)))) ].
G.f.: A(x) = x*F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+3)) for n>0 with F(x,0)=1; further, x*F(x,n) is the n-th iteration of A(x).
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=0..n} A_{3*k}(x), where A_n(x) denotes the n-th iteration of A(x) with A_0(x)=x.
Showing 1-10 of 12 results. Next