cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A115896 Numbers k such that k + phi(k) is a palindrome.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 17, 21, 61, 63, 71, 142, 157, 167, 183, 184, 190, 197, 201, 213, 215, 219, 237, 255, 263, 283, 284, 293, 305, 322, 325, 338, 359, 375, 379, 389, 395, 407, 412, 427, 445, 452, 458, 459, 460, 483, 535, 539, 549, 566, 568, 586, 595, 603, 941
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			183 + phi(183) = 183 + 120 = 303.
		

Crossrefs

Cf. A121048 (n+phi(n)).

Programs

  • Maple
    ispali:= proc(n) local L; L:= convert(n,base,10); andmap(t -> L[t]=L[-t], [$1..nops(L)/2]) end proc:
    select(t -> ispali(t+numtheory:-phi(t)), [$1..1000]); # Robert Israel, Sep 19 2022
  • Mathematica
    nppQ[n_]:=Module[{idn=IntegerDigits[n+EulerPhi[n]]},idn==Reverse[idn]]; Select[Range[1000],nppQ] (* Harvey P. Dale, Aug 18 2013 *)
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d) \\ A002113
    isok(k) = ispal(k+eulerphi(k)) \\ Alexandru Petrescu, Sep 19 2022

A114072 Numbers k such that phi(k) + k is a fourth power.

Original entry on oeis.org

12, 41, 172, 176, 192, 313, 385, 972, 1008, 1201, 2732, 2752, 2816, 3072, 6668, 7321, 14281, 15552, 16128, 25616, 29425, 41761, 43696, 43712, 44032, 45056, 49152, 78732, 78768, 79056, 81648, 84240, 97241, 106688, 123921, 139921
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			phi(41) + 41 = 81 = 3^4.
		

Crossrefs

Cf. A000010, A121048, subsequence of A114073.

Programs

  • Mathematica
    Select[Range[140000],IntegerQ[Surd[#+EulerPhi[#],4]]&] (* Harvey P. Dale, Sep 27 2020 *)
  • PARI
    isok(n) = ispower(eulerphi(n) + n, 4); \\ Michel Marcus, Jan 09 2014

A114073 Numbers k such that phi(k) + k is a square.

Original entry on oeis.org

5, 12, 13, 41, 44, 48, 61, 68, 108, 113, 125, 172, 176, 181, 192, 252, 268, 272, 313, 385, 421, 432, 452, 524, 613, 657, 684, 688, 704, 761, 768, 772, 825, 964, 972, 1008, 1013, 1072, 1088, 1201, 1301, 1332, 1412, 1728, 1729, 1741, 1808, 1861, 2092
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			phi(41) + 41 = 81 = 9^2.
		

Crossrefs

Cf. A000010, A121048, supersequence of A114072.

Programs

  • Mathematica
    Select[Range[2500], IntegerQ[Sqrt[EulerPhi[#] + #]] &] (* Amiram Eldar, Jan 18 2024 *)
  • PARI
    isok(n) = issquare(eulerphi(n) + n); \\ Michel Marcus, Jan 09 2014

A309835 Numbers k such that k + phi(k) is a repunit.

Original entry on oeis.org

5798663, 5555564201311, 5555574497311, 5555593942711, 66815976110703, 69437045907973255623
Offset: 1

Views

Author

Giovanni Resta, Aug 19 2019

Keywords

Comments

Also in the sequence is 555555555555555555555556288388841217550575591423513701223. - Robert Israel, Aug 20 2019
The number 5975946235638859341313216528710061511 is also in the sequence. - Daniel Suteu, Aug 22 2019

Examples

			5798663 is a terms since phi(5798663) = 5312448 and 5798663 + 5312448 = 11111111.
		

Crossrefs

Subsequence of A116018.

Programs

  • PARI
    isok(k) = my(d=digits(k+eulerphi(k))); vecmin(d)==1 && vecmax(d)==1; \\ Daniel Suteu, Aug 22 2019

Extensions

a(5) from Daniel Suteu confirmed by Max Alekseyev, Oct 25 2023
a(6) from Max Alekseyev, Nov 30 2023

A063794 Numbers k such that usigma(k) = k + phi(k).

Original entry on oeis.org

2, 28, 1368, 1700, 342000, 2061000, 2120832, 65834560, 89082000
Offset: 1

Views

Author

Jason Earls, Aug 18 2001

Keywords

Comments

No other terms < 2700000000. - Jud McCranie, Nov 04 2001

Crossrefs

Programs

  • PARI
    us(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d));
    for(n=1,10^8, if(us(n)==n+eulerphi(n),print1(n, ", ")))

Extensions

More terms from Jud McCranie, Nov 04 2001
Offset corrected by Mohammed Yaseen, Jul 17 2023

A383044 Numbers m such that phi(m) + phi(m+phi(m)) = m where phi is the Euler totient function.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 70, 80, 94, 96, 112, 128, 140, 160, 188, 192, 224, 256, 280, 320, 376, 384, 448, 512, 560, 640, 752, 768, 896, 1024, 1120, 1280, 1504, 1536, 1792, 2048, 2240, 2560, 3008, 3072, 3584, 4096, 4480, 5120, 6016, 6144, 7168, 8192, 8960
Offset: 1

Views

Author

Michel Marcus, Apr 14 2025

Keywords

Comments

Empirical observation: Let phi(m) + phi(m + phi(m)) = A*m / B, GCD(A,B) = 1. For some (A,B) like (1,1) - this sequence, (2,3), (4,5), (4,7), (5,7), (7,9), (14,9), (8,11), ..., there exists (finitely/infinitely many ?) solutions to phi(m) + phi(m + phi(m)) = A*m / B. Experimentally it looks like for m = 3*A033845(n) = 18*A003586(n), phi(m) + phi(m + phi(m)) = 7*m / 9. - Ctibor O. Zizka, Apr 25 2025

Crossrefs

Programs

  • Mathematica
    q[m_] := Module[{phi = EulerPhi[m]}, phi + EulerPhi[m + phi] == m]; Select[Range[10000], q] (* Amiram Eldar, Apr 14 2025 *)
  • PARI
    isok(m) = eulerphi(m) + eulerphi(m+eulerphi(m)) == m;
Showing 1-6 of 6 results.