cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008316 Triangle of coefficients of Legendre polynomials P_n (x).

Original entry on oeis.org

1, 1, -1, 3, -3, 5, 3, -30, 35, 15, -70, 63, -5, 105, -315, 231, -35, 315, -693, 429, 35, -1260, 6930, -12012, 6435, 315, -4620, 18018, -25740, 12155, -63, 3465, -30030, 90090, -109395, 46189, -693, 15015, -90090, 218790, -230945, 88179, 231, -18018, 225225, -1021020, 2078505, -1939938, 676039
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
   1;
   1;
  -1,   3;
  -3,   5;
   3, -30, 35;
  15, -70, 63;
  ...
P_5(x) = (15*x - 70*x^3 + 63*x^5)/8 so T(5, ) = (15, -70, 63). P_6(x) = (-5 + 105*x^2 - 315*x^4 + 231*x^6)/16 so T(6, ) = (-5, 105, -315, 231). - _Michael Somos_, Oct 24 2002
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.

Crossrefs

With zeros: A100258.
Cf. A121448.

Programs

  • Mathematica
    Flatten[Table[(LegendreP[i, x]/.{Plus->List, x->1})Max[ Denominator[LegendreP[i, x]/.{Plus->List, x->1}]], {i, 0, 12}]]
  • PARI
    {T(n, k) = if( n<0, 0, polcoeff( pollegendre(n) * 2^valuation( (n\2*2)!, 2), n%2 + 2*k))}; /* Michael Somos, Oct 24 2002 */

Extensions

More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 28 2002

A053117 Triangle read by rows of coefficients of Chebyshev's U(n,x) polynomials (exponents in increasing order).

Original entry on oeis.org

1, 0, 2, -1, 0, 4, 0, -4, 0, 8, 1, 0, -12, 0, 16, 0, 6, 0, -32, 0, 32, -1, 0, 24, 0, -80, 0, 64, 0, -8, 0, 80, 0, -192, 0, 128, 1, 0, -40, 0, 240, 0, -448, 0, 256, 0, 10, 0, -160, 0, 672, 0, -1024, 0, 512, -1, 0, 60, 0, -560, 0, 1792, 0, -2304, 0, 1024, 0, -12, 0, 280, 0, -1792, 0, 4608, 0, -5120, 0, 2048, 1, 0, -84, 0, 1120, 0, -5376, 0, 11520, 0, -11264, 0, 4096
Offset: 0

Views

Author

Keywords

Comments

G.f. for row polynomials U(n,x) (signed triangle): 1/(1-2*x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,2*x) as row polynomials with g.f. 1/(1-2*x*z-z^2).
Row sums (unsigned triangle) A000129(n+1) (Pell). Row sums (signed triangle) A000027(n+1) (natural numbers).
The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of this entry, so Sum_{k=0..n} L(k,x) L(n-k,x) = U(n,x). This reduces to U(n,x) = L(n/2,x)^2 + 2*Sum_{k=0...n/2-1} L(k,x) L(n-k,x) for n even and U(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x) L(n-k.x) for odd n. (Cf. also Allouche et al.) For a connection through the Legendre polynomials to elliptic curves and modular forms, see the MathOverflow question below. For the normalized Legendre polynomials, see A100258. (Cf. A097610 with h1 = -2x and h2 = 1, A207538, A099089 and A133156.) - Tom Copeland, Feb 04 2016
The compositional inverse of the shifted o.g.f. x / (1 + 2xz + z^2) for differently signed row polynomials of this entry is the shifted o.g.f. of A121448. The unsigned, non-vanishing antidiagonals (top to bottom) of this triangle are the rows of A038207. - Tom Copeland, Feb 08 2016

Examples

			Triangle begins:
   1;
   0,  2;
  -1,  0,   4;
   0, -4,   0, 8;
   1,  0, -12, 0, 16;
  ...
E.g., fourth row (n=3) {0,-4,0,8} corresponds to polynomial U(3,x) = -4*x + 8*x^3.
		

References

  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 22, page 196.

Crossrefs

Programs

  • Julia
    using Nemo
    function A053117Row(n)
        R, x = PolynomialRing(ZZ, "x")
        p = chebyshev_u(n, x)
        [coeff(p, j) for j in 0:n] end
    for n in 0:6 A053117Row(n) |> println end # Peter Luschny, Mar 13 2018
  • Maple
    seq(seq(coeff(orthopoly[U](n,x),x,j),j=0..n),n=0..16); # Robert Israel, Feb 09 2016
  • Mathematica
    Flatten[ Table[ CoefficientList[ ChebyshevU[n, x], x], {n, 0, 12}]](* Jean-François Alcover, Nov 24 2011 *)
  • PARI
    T(n, k) = polcoeff(polchebyshev(n,2), k); \\ Michel Marcus, Feb 10 2016
    

Formula

a(n, m) = (2^m)*A049310(n,m).
a(n, m) := 0 if n
If n and k are of the same parity then a(n,k)=(-1)^((n-k)/2)*sum(binomial((n+k)/2,i)*binomial((n+k)/2-i,(n-k)/2),i=0..k) and a(n,k)=0 otherwise. - Milan Janjic, Apr 13 2008

A097610 Triangle read by rows: T(n,k) is number of Motzkin paths of length n and having k horizontal steps.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 5, 0, 30, 0, 15, 0, 1, 0, 35, 0, 70, 0, 21, 0, 1, 14, 0, 140, 0, 140, 0, 28, 0, 1, 0, 126, 0, 420, 0, 252, 0, 36, 0, 1, 42, 0, 630, 0, 1050, 0, 420, 0, 45, 0, 1, 0, 462, 0, 2310, 0, 2310, 0, 660, 0, 55, 0, 1, 132, 0, 2772, 0
Offset: 0

Author

Emeric Deutsch, Aug 30 2004

Keywords

Comments

Row sums are the Motzkin numbers (A001006). Column 0 gives the aerated Catalan numbers (A000108).
Let P_n(x) = Sum_{k=0..n} T(n,k)*x^k. P_0(x) = 1, P_1(x) = x, P_n(x) = x*P_(n-1)(x) + Sum_{j=0..n-2} P_j(x)*P_(n-2-j)(x); essentially the same as A124027. - Philippe Deléham, Oct 03 2007
G. J. Chaitin's numbers of s-expressions of size n are given by the coefficients of polynomials p(k, x) satisfying: p(k, x) = Sum_{j=2..k-1} p(j, x)*p(k-j, x). The coefficients of these polynomials also give (essentially) the triangle shown here. - Roger L. Bagula, Oct 31 2006
Exponential Riordan array [Bessel_I(1,2x)/x,x]. - Paul Barry, Mar 24 2010
Diagonal sums are the aerated large Schroeder numbers. - Paul Barry, Apr 21 2010
Non-vanishing antidiagonals are rows of A060693. - Tom Copeland, Feb 03 2016
These polynomials are related to the Gegenbauer polynomials which in turn are specializations of the Jacobi polynomials. The o.g.f. of the Gegenbauer polynomials is 1 / [1-2tx+x^2]^a. For the generating function Gb(x,h1,h2,a) = [x / (1 + h1 x + h2 x^2)]^a, the compositional inverse in x is Gbinv(x,h1,h2,a) = [(1-h1*y) - sqrt[(1-h1*y)^2-4h2*y^2]]/(2*h2*y) with y = x^(1/a). The polynomials of this entry are generated by Gbinv(x,t,1,1). The Legendre polynomials are related to the o.g.f. Gb(x,-2t,1,1/2). Cf. A121448. - Tom Copeland, Feb 07 2016
The bivariate o.g.f. in Copeland's Jan 29 2016 formulas can be related to conformal mappings of the complex plane and a solution of the dKP hierarchy. Cf. p. 24 of the Takebe et al. paper. - Tom Copeland, May 30 2018

Examples

			Triangle begins:
1;
0,  1;
1,  0,  1;
0,  3,  0,  1;
2,  0,  6,  0,  1;
0, 10,  0, 10,  0,  1;
5,  0, 30,  0, 15,  0,  1;
Row n has n+1 terms.
T(4,2)=6 because we have HHUD, HUDH, UDHH, HUHD, UHDH, UHHD, where U=(1,1), D=(1,-1) and H=(1,0).
		

References

  • G. J. Chaitin, Algorithmic Information Theory, Cambridge Univ. Press, 1987, page 169.

Crossrefs

Cf. A001006, A000108. A124027 is an essentially identical triangle.
Cf. A001263.

Programs

  • Maple
    G:=(1-t*z-sqrt(1-2*t*z+t^2*z^2-4*z^2))/2/z^2:
    Gser:=simplify(series(G,z=0,16)): P[0]:=1:
    for n from 1 to 13 do P[n]:=sort(coeff(Gser,z^n)) od:
    seq(seq(coeff(t*P[n],t^k),k=1..n+1),n=0..13);
    # Maple program for the triangular array:
    T:=proc(n,k) if n-k mod 2 = 0 and k<=n then n!/k!/((n-k)/2)!/((n-k)/2+1)! else 0 fi end: TT:=(n,k)->T(n-1,k-1): matrix(10,10,TT);
  • Mathematica
    T[n_,k_]:=If[n>=k&&EvenQ[n-k],n!/(k!((n-k)/2)!((n-k)/2+1)!),0];
    Flatten[Table[T[n,k],{n,0,20},{k,0,n}]] (* Peter J. C. Moses, Apr 06 2013 *)
    T[n_,k_] := If[OddQ[n - k], 0, Binomial[n, k] CatalanNumber[(n - k)/2]]; (* Peter Luschny, Jun 06 2018 *)

Formula

G.f.: [1-tz-sqrt(1-2tz+t^2*z^2-4z^2)]/(2z^2).
T(n, k) = n!/[k!((n-k)/2)!((n-k)/2-1)! ] = A055151(n, (n-k)/2) if n-k is a nonnegative even number; otherwise T(n, k) = 0.
T(n, k) = C(n, k)*C((n-k)/2)*(1+(-1)^(n-k))/2 if k <= n, 0 otherwise. - Paul Barry, May 18 2005
T(n,k) = A121448(n,k)/2^k. - Philippe Deléham, Aug 17 2006
Sum_{k=0..n} T(n,k)*2^k = A000108(n+1). - Philippe Deléham, Aug 22 2006
Sum_{k=0..n} T(n,k)*3^k = A002212(n+1). - Philippe Deléham, Oct 03 2007
G.f.: 1/(1-x*y-x^2/(1-x*y-x^2/(1-x*y-x^2/.... (continued fraction). - Paul Barry, Dec 15 2008
Sum_{k=0..n} T(n,k)*4^k = A005572(n). - Philippe Deléham, Dec 03 2009
T(n,k) = A007318(n,k)*A126120(n-k). - Philippe Deléham, Dec 12 2009
From Tom Copeland, Jan 23 2016: (Start)
E.g.f.: M(x,t) = e^(xt) AC(t) = e^(xt) I_1(2t)/t = e(xt) * e.g.f.(A126120(t)) = e^(xt) Sum_{n>=0} t^(2n)/(n!(n+1)!) = exp[t P(.,x)].
The e.g.f. of this Appell sequence of polynomials P(n,x) is e^(xt) times the e.g.f. AC(t) of the aerated Catalan numbers A126120. AC(t) = I_1(2t)/t, where I_n(x) = T_n(d/dx) I_0(x) are the modified Bessel functions of the first kind and T_n, the Chebyshev polynomials of the first kind.
P(n,x) has the lowering and raising operators L = d/dx = D and R = d/dD log{M(x,D)} = x + d/dD log{AC(D)} = x + Sum_{n>=0} c(n) D^(2n+1)/(2n+1)! with c(n) = (-1)^n A180874(n+1), i.e., L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
(P(.,x) + y)^n = P(n,x+y) = Sum_{k=0..n} binomial(n,k) P(k,x) y^(n-k) = (b.+x+y)^n, where (b.)^k = b_k = A126120(k).
Exp(b.D) e^(xt) = exp[(x+b.)t] = exp[P(.,x)t] = e^(b.t) e^(xt) = e^(xt) AC(t).
See p. 12 of the Alexeev et al. link and A055151 for a refinement.
Shifted o.g.f: G(x,t) = [1-tx-sqrt[(1-tx)^2-4x^2]] / 2x = x + t x^2 + (1+t) x^3 + ... has the compositional inverse Ginv(x,t) = x / [1 + tx + x^2] = x - t x^2 +(-1+t^2) x^3 + (2t-t^3) x^4 + (1-3t^2+t^4) x^5 + ..., a shifted o.g.f. for the signed Chebyshev polynomials of the second kind of A049310 (cf. also the Fibonacci polynomials of A011973). Then the inversion formula of A134264, involving non-crossing partitions and free probability with their multitude of interpretations (cf. A125181 also), can be used with h_0 = 1, h_1 = t, and h_2 = 1 to interpret the coefficients of the Motzkin polynomials combinatorially.
(End)
From Tom Copeland, Jan 29 2016: (Start)
Provides coefficients of the inverse of f(x) = x / [1 + h1 x + h2 x^2], a bivariate generating function of A049310 (mod signs).
finv(x) = [(1-h1*x) - sqrt[(1-h1*x)^2-4h2*x^2]]/(2*h2*x) = x + h1 x^2 + (h2 + h1^2) x^3 + (3 h1 h2 + h1^3) x^4 + ... is a bivariate o.g.f. for this entry.
The infinitesimal generator for finv(x) is g(x) d/dx with g(x) = 1 /[df(x)/dx] = x^2 / [(f(x))^2 (1 - h2 x^2)] = (1 + h1 x + h2 x^2)^2 / (1 - h2 x^2) so that [g(x)d/dx]^n/n! x evaluated at x = 0 gives the row polynomials FI(n,h1,h2) of the compositional inverse of f(x), i.e., exp[x g(u)d/du] u |_(u=0) = finv(x) = 1 / [1 -x FI(.,h1,h2)]. Cf. A145271. E.g.,
FI(0,h1,h2) = 0
FI(1,h1,h2) = 1
FI(2,h1,h2) = 1 h1
FI(3,h1,h2) = 1 h2 + 1 h1^2
FI(4,h1,h2) = 3 h2 h1 + 1 h1^3
FI(5,h1,h2) = 2 h2^2 + 6 h2 h1^2 + 1 h1^4
FI(6,h1,h2) = 10 h2^2 h1 + 10 h2 h1^3 + 1 h1^5.
And with D = d/dh1, FI(n+1, h1,h2) = MT(n,h1,h2) = (b.y + h1)^n = Sum_{k=0..n} binomial(n,k) b(k) y^k h1^(n-k) = exp[(b.y D] (h1)^n = AC(y D) (h1)^n, where b(k) = A126120(k), y = sqrt(h2), and AC(t) is defined in my Jan 23 formulas above. Equivalently, AC(y D) e^(x h1) = exp[x MT(.,h1,h2)].
The MT polynomials comprise an Appell sequence in h1 with e.g.f. e^(h1*x) AC(xy) = exp[x MT(.,h1,h2)] with lowering operator L = d/dh1 = D, i.e., L MT(n,h1,h2) = dMT(n,h1,h2)/dh1 = n MT(n-1,h1,h2) and raising operator R = h1 + dlog{AC(y L)}/dL = h1 + Sum_{n>=0} c(n) h2^(n+1) D^(2n+1)/(2n+1)! = h1 + h2 d/dh1 - h2^2 (d/dh1)^3/3! + 5 h2^3 (d/dh1)^5/5! - ... with c(n) = (-1)^n A180874(n+1) (consistent with the raising operator in the Jan 23 formulas).
The compositional inverse finv(x) is also obtained from the non-crossing partitions of A134264 (or A125181) with h_0 = 1, h_1 = h1, h_2 = h2, and h_n = 0 for all other n.
See A238390 for the umbral compositional inverse in h1 of MT(n,h1,h2) and inverse matrix.
(End)
From Tom Copeland, Feb 13 2016: (Start)
z1(x,h1,h2) = finv(x), the bivariate o.g.f. above for this entry, is the zero that vanishes for x=0 for the quadratic polynomial Q(z;z1(x,h1,h2),z2(x,h1,h2)) = (z-z1)(z-z2) = z^2 - (z1+z2) z + (z1*z2) = z^2 - e1 z + e2 = z^2 - [(1-h1*x)/(h2*x)] z + 1/h2, where e1 and e2 are the elementary symmetric polynomials for two indeterminates.
The other zero is given by z2(x,h1,h2) = (1 - h1*x)/(h2*x) - z1(x,h1,h2) = [1 - h1*x + sqrt[(1-h1*x)^2 - 4 h2*x^2]] / (2h2*x).
The two are the nontrivial zeros of the elliptic curve in Legendre normal form y^2 = z (z-z1)(z-z2), (see Landweber et al., p. 14, Ellingsrud, and A121448), and the zeros for the Riccati equation z' = (z - z1)(z - z2), associated to soliton solutions of the KdV equation (see Copeland link).
(End)
Comparing the shifted o.g.f. S(x) = x / (1 - h_1 x + h_2 x^2) for the bivariate Chebyshev polynomials S_n(h_1,h_2) of A049310 with the shifted o.g.f. H(x) = x / ((1 - a x)(1 - b x)) for the complete homogeneous symmetric polynomials H_n(a,b) = (a^(n+1)-b^(n+1)) / (a - b) shows that S_n(h_1,h_2) = H_n(a,b) for h_1 = a + b and h_2 = ab and, conversely, a = (h_1 + sqrt(h_1^2 - 4 h_2)) / 2 and b = (h_1 - sqrt(h_1^2 - 4 h_2)) / 2. The compositional inverse about the origin of S(x) gives a bivariate o.g.f. for signed Motzkin polynomials M_n(h_1,h_2) of this entry, and that of H(x) gives one for signed Narayana polynomials N_n(a,b) of A001263, thereby relating the bivariate Motzkin and Narayana polynomials by the indeterminate transformations. E.g., M_2(h_1,h_2) = h_2 + h_1^2 = ab + (a + b)^2 = a^2 + 3 ab + b^2 = N_2(a,b). - Tom Copeland, Jan 27 2024
Showing 1-3 of 3 results.