cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121449 Expansion of (1 - 3*x + 2*x^2)/(1 - 4*x + 3*x^2 + x^3).

Original entry on oeis.org

1, 1, 3, 8, 22, 61, 170, 475, 1329, 3721, 10422, 29196, 81797, 229178, 642125, 1799169, 5041123, 14124860, 39576902, 110891905, 310712054, 870595599, 2439354329, 6834918465, 19151015274, 53659951372, 150351841201, 421276495414, 1180390506681, 3307380699281
Offset: 0

Views

Author

Philippe Deléham, Sep 06 2006

Keywords

Comments

From Roman Witula, Aug 07 2012: (Start)
In the cited Witula-Slota-Warzynski paper three so-called quasi-Fibonacci numbers A(n;d), B(n;d) and C(n;d), where n = 0,1,...,d \in C are discussed. These numbers are created by each of the following relations:
(1+d*c(j))^n = A(n;d) + B(n;d)*c(j) + C(n;d)*c(2*j), for every j=1,2,4, where c(j):=2*cos(2*Pi*j/7).
In fact all these "numbers" are integer polynomials of the argument d.
In the sequel for d=-1 we obtain A(n;-1)=a(n), B(n+1;-1)=-A085810(n).
Moreover, we have A(n;1)=A077998(n), B(n;1)=A006054(n+1), C(n;1)=A006054(n), and A(n;2)=A121442(n).
We note that the elements of the sequences A(n;-1), B(n;-1), and C(n;-1) satisfy the following system of recurrence equations:
A(0;-1)=1, B(0;-1)=C(0;-1)=0,
A(n+1;-1)=A(n;-1)-2*B(n;-1)+C(n;-1),
B(n+1;-1)=-A(n;-1)+B(n;-1), C(n+1;-1)=-B(n;-1)+2*C(n;-1).
It is proved that binomial transforms of the sequences: A(n;1), B(n;1), and C(n;1) are equal to the following sequences:
A(n;1)*(A(n;-1)-C(n;-1))-B(n;1)*(B(n;-1)+C(n;-1))+C(n;1)*B(n;-1), -A(n;1)*C(n;-1)+B(n;1)*(A(n;-1)-C(n;-1))-C(n;1)*(B(n;-1)-C(n;-1)), and
A(n;1)*(B(n;-1)-C(n;-1))-B(n;1)*B(n;-1)+C(n;1)*(A(n;-1)-B(n;-1)+C(n;-1)), respectively, whereas we have
A(n;-1) = Sum_{k=0..n} binomial(n,k)*(A(k;1)*A(n-k;1)-A(k;1)*B(n-k;1)-B(k;1)*C(n-k;1)-A(n-k;1)*C(k;1)+2*B(n-k;1)*C(k;1)-C(k;1)*C(n-k;1)),
B(n;-1) = Sum_{k=0..n} binomial(n,k)*(-A(k;1)*B(n-k;1)+A(k;1)*C(n-k;1)+B(k;1)*B(n-k;1)-A(n-k;1)*C(k;1)+B(n-k;1)*C(k;1)-C(k;1)*C(n-k;1)), and
C(n;-1) = Sum_{k=0..n} binomial(n,k)*(-A(k;1)*B(n-k;1)+A(n-k;1)*B(k;1)+B(k;1)*B(n-k;1)-B(k;1)*C(n-k;1)-A(n-k;1)*C(k;1)) (see identities (3.50-52) and (3.61-63) in the Witula-Slota-Warzynski paper).
(End)

Crossrefs

Programs

  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Mathematica
    CoefficientList[Series[(1 - 3*x + 2*x^2)/(1-4*x + 3*x^2 + x^3), {x, 0, 200}], x] (* Stefan Steinerberger, Sep 11 2006 *)
    LinearRecurrence[{4,-3,-1},{1,1,3},50] (* Roman Witula, Aug 07 2012 *)
  • PARI
    x='x+O('x^30); Vec((1-3*x+2*x^2)/(1-4*x+3*x^2+x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

a(0)=a(1)=1, a(2)=3, a(n+1) = 4*a(n) - 3*a(n-1) - a(n-2) for n>=2.
7*a(n) = (2-c(4))*(1-c(1))^n + (2-c(1))*(1-c(2))^n + (2-c(2))*(1-c(4))^n = (s(2))^2*(1-c(1))^n + (s(4))^2*(1-c(2))^n + (s(1))^2*(1-c(4))^n, where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7) -- it is the special case, for d=-1, of the Binet's formula for the respective quasi-Fibonacci number A(n;d) discussed in the Witula-Slota-Warzynski paper. - Roman Witula, Aug 07 2012

Extensions

More terms from Stefan Steinerberger, Sep 11 2006
a(27)-a(29) from Vincenzo Librandi, Sep 18 2015