cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A005021 Random walks (binomial transform of A006054).

Original entry on oeis.org

1, 5, 19, 66, 221, 728, 2380, 7753, 25213, 81927, 266110, 864201, 2806272, 9112264, 29587889, 96072133, 311945595, 1012883066, 3288813893, 10678716664, 34673583028, 112584429049, 365559363741, 1186963827439, 3854047383798, 12514013318097, 40632746115136
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length 2n+5 in the path graph P_6 from one end to the other one. Example: a(1)=5 because in the path ABCDEF we have ABABCDEF, ABCBCDEF, ABCDCDEF, ABCDEDEF and ABCDEFEF. - Emeric Deutsch, Apr 02 2004
Since a(n) is the binomial transform of A006054 from formula (3.63) in the Witula-Slota-Warzynski paper, it follows that a(n)=A(n;1)*(B(n;-1)-C(n;-1))-B(n;1)*B(n;-1)+C(n;1)*(A(n;-1)-B(n;-1)+C(n;-1)), where A(n;1)=A077998(n), B(n;1)=A006054(n+1), C(n;1)=A006054(n), A(n;-1)=A121449(n), B(n+1;-1)=-A085810(n+1), C(n;-1)=A215404(n) and A(n;d), B(n;d), C(n;d), n in N, d in C, denote the quasi-Fibonacci numbers defined and discussed in comments in A121449 and in the cited paper. - Roman Witula, Aug 09 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
With offset -4 this sequence 6, 1, 0, 0, 1, 5, ... appears in the formula for the n-th power of the 3 X 3 tridiagonal Matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602: (M_3)^n = a(n-2)*(M_3)^2 - (6*a(n-3) - a(n-4))*M_3 + a(n-3)*1_3, with the 3 X 3 unit matrix 1_3, for n >= 0. Proof from Cayley-Hamilton: (M_3)^n = 5*(M_3)^3 - 6*M_3 + 1_3 (see A332602 for the characteristic polynomial Phi(3, x)), and the recurrence (M_3)^n = M_3*(M_3)^(n-1). For (M_3)^n[1,1] = 2*a(n-2) - 5*a(n-3) + a(n-4), for n >= 0, see A080937(n).
The formula for a(n) in terms of r = rho(7) = A160389 given below shows that a(n)/a(n-1) converges to rho(7)^2 = A116425 = 3.2469796... for n -> infinity. This is because r - 2/r = 0.692..., and r - 1 - 1/r = 0.137... .
(End)

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Double partial sums of A060557. Bisection of A052547.

Programs

  • Magma
    I:=[1,5,19]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Maple
    a:=k->sum(binomial(5+2*k,7*j+k-2),j=ceil((2-k)/7)..floor((7+k)/7))-sum(binomial(5+2*k,7*j+k-1),j=ceil((1-k)/7)..floor((6+k)/7)): seq(a(k),k=0..25);
    A005021:=-(z-1)*(z-5)/(-1+5*z-6*z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence apart from the initial 1
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,5,19}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[1/(1 - 5 x + 6 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    x='x+O('x^30); Vec(1/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

G.f.: 1/(1-5x+6x^2-x^3). - Emeric Deutsch, Apr 02 2004
a(n) = 5*a(n-1) -6*a(n-2) +a(n-3). - Emeric Deutsch, Apr 02 2004
a(n) = Sum_{j=-infinity..infinity} (binomial(5+2*k, 7*j+k-2) - binomial(5+2*k, 7*j+k-1)) (a finite sum).
a(n-2) = 2^n*C(n;1/2)=(1/7)*((c(2)-c(4))*(c(4))^(2n) + (c(4)-c(1))*(c(1))^(2n) + (c(1)-c(2))*(c(2))^(2n)), where a(-2)=a(-1):=0, c(j):=2*cos(2Pi*j/7). This formula follows from the Binet formula for C(n;d)--one of the quasi-Fibonacci numbers (see comments in A121449 and the formula (3.17) in the Witula-Slota-Warzynski paper). - Roman Witula, Aug 09 2012
In terms of the algebraic number r = rho(7) = 2*cos(Pi/7) = A160389 of degree 3 the preceding formula gives a(n) = r^(2*(n+2))*(A1(r) + A2(r)*(r - 2/r)^(2*(n+1)) = A3(r)*(r - 1 - 1/r)^(2*(n+1)))/7, for n >= -4 (see a comment above for this offset), with A1(r) = -r^2 + 2*r + 1, A2(r) = -r^2 - r + 2, and A3(r) = 2*r^2 - r - 3. - Wolfdieter Lang, Mar 30 2020

Extensions

a(25)-a(26) from Vincenzo Librandi, Sep 18 2015

A085810 Number of three-choice paths along a corridor of height 5, starting from the lower side.

Original entry on oeis.org

1, 2, 5, 13, 35, 96, 266, 741, 2070, 5791, 16213, 45409, 127206, 356384, 998509, 2797678, 7838801, 21963661, 61540563, 172432468, 483144522, 1353740121, 3793094450, 10628012915, 29779028189, 83438979561, 233790820762, 655067316176, 1835457822857, 5142838522138, 14409913303805
Offset: 1

Views

Author

Philippe Deléham, Jul 25 2003

Keywords

Comments

From Svjetlan Feretic, Jun 01 2013: (Start)
A three-choice path is a path whose steps lie in the set {(1,1), (1,0), (1,-1)}.
The paths under consideration "live" in a corridor like 0<=y<=5. Thus, the ordinate of a vertex of a path can take six values (0,1,2,3,4,5), but the height of the corridor is five.
a(1)=1 is the number of paths with zero steps, a(2)=2 is the number of paths with one step, a(3)=5 is the number of paths with two steps, ...
Narrower corridors produce A000012, A000079, A000129, A001519, A057960. An infinitely wide corridor would produce A005773.
(End)
Diagonal sums of A114164. - Paul Barry, Nov 15 2005
C(n):= a(n)*(-1)^n appears in the following formula for the nonpositive powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^(-n) = C(n) + B(n)*rho + A(n)*sigma,n>=0, with B(n)= A181880(n-2)*(-1)^n, and A(n)= A116423(n+1)*(-1)^(n+1). For the nonnegative powers see A120757(n), |A122600(n-1)| and A181879(n), respectively. See also a comment under A052547.
a(n) is also the number of bi-wall directed polygons with n cells. (The definition of bi-wall directed polygons is given in the article on A122737.)

Crossrefs

Programs

  • Magma
    I:=[1,2,5]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015
    
  • Mathematica
    LinearRecurrence[{4,-3,-1}, {1,2,5}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(1 - 2 x)/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x+3*x^2+x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3).
From Paul Barry, Nov 15 2005: (Start)
G.f.: (1-2*x)/(1-4*x+3*x^2+x^3).
a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-k} C(n-k, j)*C(j+k, 2k));
a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-k} C(n-k, k+j)*C(k, k-j)*2^(n-2k-j));
a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-2*k} C(n-j, n-2*k-j)*C(k, j)(-1)^j*2^(n-2*k-j)). (End)
a(n-1) = -B(n;-1) = (1/7)*((c(4)-c(1))*(1-c(1))^n + (c(1)-c(2))*(1-c(2))^n + (c(2)-c(4))*(1-c(4))^n), where a(-1):=0, c(j):=2*cos(2*Pi*j/7). Moreover, B(n;d), n in N, d in C, denotes the respective quasi-Fibonacci number defined in comments to A121449 or in Witula-Slota-Warzynski's paper (see also A077998, A006054, A052975, A094789, A121442). - Roman Witula, Aug 09 2012

Extensions

Name corrected and clarified, and offset 1 from Svjetlan Feretic, Jun 01 2013

A094789 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 4.

Original entry on oeis.org

1, 4, 14, 47, 155, 507, 1652, 5373, 17460, 56714, 184183, 598091, 1942071, 6305992, 20475625, 66484244, 215873462, 700937471, 2275930827, 7389902771, 23994866364, 77910846021, 252974934692, 821404463698, 2667083556359
Offset: 1

Views

Author

Herbert Kociemba, Jun 11 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k.
With interpolated zeros (0,0,0,1,0,4,0,14,...) counts walks of length n between the start and fourth nodes on P_6. - Paul Barry, Jan 26 2005
The Hankel transforms of this sequence or of this sequence with the first term omitted give 1, -2, 1, 1, -2, 1, ... . - Wathek Chammam, Nov 16 2011
Diagonal of the square array A216201. - Philippe Deléham, Mar 28 2013

Crossrefs

Programs

  • Magma
    I:=[1,4,14]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014
    
  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[4Pi*k/7](2Cos[Pi*k/7])^(2n + 1), {k, 1, 6}]]]; Table[ f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
    LinearRecurrence[{5,-6,1}, {1,4,14}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(x - 1) / (- 1 + 5 x - 6 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    Vec(x*(x-1)/(-1 + 5*x - 6*x^2 + x^3) + O(x^40)) \\ Michel Marcus, Nov 10 2014

Formula

a(n) = (2/7)*Sum_{k = 1..6} sin(Pi*k/7)*sin(4*Pi*k/7)*(2*cos(Pi*k/7))^(2n + 1).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3).
G.f.: x*(x-1)/(-1 + 5*x - 6*x^2 + x^3). - Corrected by Vincenzo Librandi, Nov 10 2014
a(n) = 2^n*B(n; 1/2) = (1/7)*((c(1) - c(4))*(c(4))^(2n) + (c(2) - c(1))*(c(1))^(2n) + (c(4) - c(2))*(c(2))^(2n)), where c(j) := 2*cos(2*Pi*j/7). Here B(n; d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A052975, A085810, A077998, A006054, A121442). - Roman Witula, Aug 09 2012
a(n+1) = A216201(n,n+2) = A216201(n,n+3). - Philippe Deléham, Mar 28 2013

A052975 Expansion of (1-2*x)*(1-x)/(1-5*x+6*x^2-x^3).

Original entry on oeis.org

1, 2, 6, 19, 61, 197, 638, 2069, 6714, 21794, 70755, 229725, 745889, 2421850, 7863641, 25532994, 82904974, 269190547, 874055885, 2838041117, 9215060822, 29921113293, 97153242650, 315454594314, 1024274628963, 3325798821581, 10798800928441, 35063486341682
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 3. - Herbert Kociemba, Jun 11 2004
Counts all paths of length (2*n), n>=0, starting at the initial node and ending on the nodes 1, 2, 3, 4 and 5 on the path graph P_6, see the second Maple program. - Johannes W. Meijer, May 29 2010

Crossrefs

Programs

  • Magma
    I:=[1,2,6]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Sequence(Prod(Sequence(Z),Z)),Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    with(GraphTheory):G:=PathGraph(6): A:= AdjacencyMatrix(G): nmax:=25; n2:=2*nmax+1: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[k,1],k=1..5); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,2,6}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(1 - 2 x) (1 - x)/(1 - 5 x + 6 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)*(1-x)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

G.f.: (1-2*x)*(1-x)/(1-5*x+6*x^2-x^3).
a(n) = A028495(2*n). - Floor van Lamoen, Nov 02 2005
a(n) = Sum (1/7*(2-3*_alpha+_alpha^2)*_alpha^(-1-n), _alpha=RootOf(-1+5*_Z-6*_Z^2+_Z^3))
From Herbert Kociemba, Jun 11 2004: (Start)
a(n) = (2/7)*Sum_{r=1..6} sin(r*3*Pi/7)^2*(2*cos(r*Pi/7))^(2*n).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). (End)
a(n) = 2^n*A(n;1/2) = (1/7)*(s(2)^2*c(4)^(2n) + s(4)^2*c(1)^(2n) + s(1)^2*c(2)^(2n)), where c(j):=2*cos(2Pi*j/7) and s(j):=2*sin(2*Pi*j/7). Here A(n;d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A094789, A085810, A077998, A006054, A121442). I note that my and the respective Herbert Kociemba's formulas are "compatible". - Roman Witula, Aug 09 2012
a(n) = A005021(n)-3*A005021(n-1)+2*A005021(n-2). - R. J. Mathar, Feb 27 2019

A121442 Expansion of (1-x^2)/(1-x-9*x^2+x^3).

Original entry on oeis.org

1, 1, 9, 17, 97, 241, 1097, 3169, 12801, 40225, 152265, 501489, 1831649, 6192785, 22176137, 76079553, 269472001, 932011841, 3281180297, 11399814865, 39998425697, 139315579185, 487901595593, 1701743382561, 5953542163713, 20781331011169, 72661467102025
Offset: 0

Views

Author

Philippe Deléham, Sep 06 2006

Keywords

Comments

From Roman Witula, Aug 08 2012: (Start)
We have a(n)=A(n;2), where A(n;2), B(n;2) and C(n;2) are the special cases of so-called quasi-Fibonacci numbers A(n;d), B(n;d), and C(n;d) for the value of argument d=2 - for details see Witula's comments to A121449 or the paper of Witula-Slota-Warzynski's. The sequences A(n;2), B(n;2) and C(n;2) are defined by the following system of recurrence equations:
A(0;2)=1, B(0;2)=C(0;2)=0,
A(n+1;2)=A(n;2)+4*B(n;2)-2*C(n;2), B(n+1;2)=2*A(n;2)+B(n;2), and C(n+1;2)=2*B(n;2)-C(n;2).
We note that A(n;1)=A077998(n), B(n;1)=A006054(n+1), and C(n;1)=A006054(n). We know (see formulas (3.61-63) in Witula et al.'s paper) that the sequences: (-2)^(-n)*(A(n;1)*(A(n;2)-C(n;2))-B(n;1)*(B(n;2)+C(n;2))+C(n;1)*B(n;2)), (-2)^(-n)*(-A(n;1)*C(n;2)+B(n;1)*(A(n;2)-C(n;2))-C(n;1)*(B(n;2)-C(n;2))), and (-2)^(-n)*(A(n;1)*(B(n;2)-C(n;2))-B(n;1)*B(n;2)+C(n;1)*(A(n;2)-B(n;2)+C(n;2))) are the binomial transforms of the sequences (-2)^(-n)*A(n;1), (-2)^(-n)*B(n;1), and (-2)^(-n)*C(n;1) respectively. Moreover the elements of the sequences A(n;1/2)=2^(-n)*A052975, B(n;1/2)=2^(-n)*A094789, and C(n;1/2) could be described by certain convolutions type identities for the elements of A(n;2), B(n;2), and C(n;2) (see identities (3.58-60) in Witula et al.'s paper). (End)

Crossrefs

Programs

  • Magma
    I:=[1,1,9]; [n le 3 select I[n] else Self(n-1)+9*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{1,9,-1},{1,1,9},50] (* Roman Witula, Aug 08 2012 *)
    CoefficientList[Series[(1 - x^2)/(1 - x - 9 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    Vec((1-x^2)/(1-x-9*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(0)=a(1)=1, a(2)=9, a(n+1) = a(n)+9*a(n-1)-a(n-2) for n>=2.
7*a(n) = (2-c(4))*(1-2*c(1))^n + (2-c(1))*(1-2*c(2))^n + (2-c(2))*(1-2*c(4))^n = (s(2))^2*(1-2*c(1))^n + (s(4))^2*(1-2*c(2))^n + (s(1))^2*(1-2*c(4))^n, where c(j):=2*Cos(2Pi*j/7) and s(j):=2*Sin(2Pi*j/7) - it is the special case, for d=2, of the Binet's formula for the respective quasi-Fibonacci number A(n;d) discussed in Witula-Slota-Warzynski's paper (see also A121449). - Roman Witula, Aug 08 2012

Extensions

Corrected by T. D. Noe, Oct 25 2006
More terms from Vincenzo Librandi, Sep 18 2015

A215404 a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3), with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 4, 13, 39, 113, 322, 910, 2561, 7192, 20175, 56563, 158535, 444276, 1244936, 3488381, 9774440, 27387681, 76739023, 215018609, 602469686, 1688083894, 4729907909, 13252910268, 37133833451, 104046695091, 291532369743, 816855560248, 2288778436672, 6413014696201
Offset: 0

Views

Author

Roman Witula, Aug 09 2012

Keywords

Comments

We have a(n)=C(n;-1), A121449(n)=A(n;-1), A085810(n+1)=-B(n+1;-1), where A(n;d), B(n;d), and C(n;d), n in N, d in C, are so-called quasi-Fibonacci numbers defined and discussed in the comments to A121449 and in Witula-Slota-Warzynski's paper. It follows from formulas (3.47-49) in this paper that the value of A(n;1/3), B(n;1/3) and C(n;1/3) could be obtained from special convolution type identities for sequences a(n), A121449, and A085810.

Crossrefs

Programs

  • Magma
    I:=[0,0,1]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{4,-3,-1}, {0,0,1}, 50]
    CoefficientList[Series[x^2/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    Vec(x^2/(1-4*x+3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

G.f.: x^2/(1-4*x+3*x^2+x^3).
a(n) = (1/7)*((c(2)-c(4))*(1-c(1))^n + (c(4)-c(1))*(1-c(2))^n + (c(1)-c(2))*(1-c(4))^n), where c(j):=2*cos(2*Pi*j/7) - this formula is the Binet formula for a(n) (see the Binet formula (3.17) for the respective quasi-Fibonacci number C(n;d) for value d=-1 in the Witula-Slota-Warzynski paper).

A121458 Expansion of (1+x-2*x^2)/(1-21*x^2-7*x^3).

Original entry on oeis.org

1, 1, 19, 28, 406, 721, 8722, 17983, 188209, 438697, 4078270, 10530100, 88714549, 249679990, 1936716229, 5864281633, 42418800739, 136706927896, 931844786950, 3167777090989, 20525689021222, 73046232419419, 453213909082585
Offset: 0

Views

Author

Philippe Deléham, Sep 07 2006

Keywords

Comments

We have a(n)=A(n;3), where A(n;d), n=1,2,..., d in C denote one of the three quasi-Fibonacci numbers defined in the comments to A121449 and in the Witula-Slota-Warzynski paper. The remaining two "conjugate" sequences B(n;3) and C(n;3) can be obtained from the following system of recurrence equations: A(0;3)=1, B(0;3)=C(0;3)=0, A(n+1;3)=A(n;3)+6*B(n;3)-3*C(n;3), B(n+1;3)=3*A(n;3)+B(n;3), C(n+1;3)=3*B(n;3)-2*C(n;3). These sequences are also connected by very intriguing convolution type relations (in some sense limiting in the nature) - see identities (3.53-55) and the identities (3.47-49) (the last ones for the value d=3) in the cited paper. We note that each of the three numbers a(3*n), a(3*n+1) and a(3*n+2) is divided by 7^n for every n=0,1,..., which follows easily from recurrence relation for the sequence a(n). - Roman Witula, Aug 11 2012

Programs

  • Mathematica
    CoefficientList[Series[(1 + x - 2*x^2)/(1 - 21*x^2 - 7*x^3), {x, 0, 200}], x] (* Stefan Steinerberger, Sep 11 2006 *)
    LinearRecurrence[{0,21,7},{1,1,19},30] (* Harvey P. Dale, May 19 2012 *)
  • PARI
    Vec((1+x-2*x^2)/(1-21*x^2-7*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(0)=a(1)=1, a(2)=19, a(n+1) = 21*a(n-1)+7*a(n-2) for n>=2.
a(n) = (1/7)*((s(2))^2*(1+3*c(1))^n + (s(4))^2*(1+3*c(2))^n + (s(1))^2*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7) (for the proof see Witula-Slota-Warzynski paper). - Roman Witula, Aug 11 2012

Extensions

More terms from Stefan Steinerberger, Sep 11 2006

A215484 a(n) = 21*a(n-2) + 7*a(n-3), with a(0)=a(1)=0, a(2)=9.

Original entry on oeis.org

0, 0, 9, 0, 189, 63, 3969, 2646, 83790, 83349, 1778112, 2336859, 37923795, 61520823, 812757708, 1557403848, 17498557629, 38394784764, 378371537145, 928780383447, 8214565773393, 22152988812402, 179007343925382, 522714725474193, 3914225144119836, 12230060642435727, 85857731104835907, 284230849499989119
Offset: 0

Views

Author

Roman Witula, Aug 13 2012

Keywords

Comments

We have a(n)=C(n;3), where C(n;d), n=1,2,..., d in C, denote one of the quasi-Fibonacci numbers defined in the comments to A121449 and in the Witula-Slota-Warzynski paper. Its conjugate sequences A(n;3) and B(n;3) are discussed in A121458 and A215492, respectively. Similarly as in A121458, we deduce that each of the elements a(3*n), a(3*n+1), a(3*n+2) are divisible by 9*7^n for every n=0,1,... . Some additional facts connecting all three sequences a(n), A121458, and A215492 are given in the comments to A121458.

Examples

			We have a(5)=7*a(2), a(4)=21*a(2), a(4)=3*a(5), a(6)=21*a(4), a(7)=14*a(4), 3*a(7)=2*a(6), a(8)-a(9)=7*a(5), a(9)=21*a(6), 2*a(9)=63*a(7), a(12)=455*a(9) - especially the values and the relations connecting with a(8) and a(9) are very attractive.
		

Programs

  • Magma
    I:=[0,0,9]; [n le 3 select I[n] else 21*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    LinearRecurrence[{0,21,7}, {0,0,9}, 50]
    CoefficientList[Series[9x^2/(1-21x^2-7x^3),{x,0,30}],x] (* Harvey P. Dale, Jul 06 2021 *)
  • PARI
    x='x+O('x^30); concat([0,0], Vec(9*x^2/(1-21*x^2-7*x^3))) \\ G. C. Greubel, Apr 19 2018
    

Formula

a(n) = (1/7)*((c(2)-c(4))*(1+3*c(1))^n + (c(4)-c(1))*(1+3*c(2))^n + (c(1)-c(2))*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) (for the proof see formula (3.17) for d=3 in the Witula-Slota-Warzynski paper).
G.f.: 9*x^2/(1-21*x^2-7*x^3).

A215492 a(n) = 21*a(n-2) + 7*a(n-3), with a(0)=0, a(1)=3, and a(2)=6.

Original entry on oeis.org

0, 3, 6, 63, 147, 1365, 3528, 29694, 83643, 648270, 1964361, 14199171, 45789471, 311933118, 1060973088, 6871121775, 24463966674, 151720368891, 561841152579, 3357375513429, 12860706786396, 74437773850062, 293576471108319, 1653218198356074, 6686170310225133
Offset: 0

Views

Author

Roman Witula, Aug 13 2012

Keywords

Comments

We have a(n)=B(n;3), where B(n;d), n=1,2,..., d \in C, denote one of the quasi-Fibonacci numbers defined in the comments to A121449 and in the Witula-Slota-Warzynski paper. Its conjugate sequences A(n;3) and C(n;3) are discussed in A121458 and A215484 respectively. Similarly as in A121458 we deduce that each of the following elements a(3*n), a(3*n+1), a(3*n+2) is divided by 3*7^n for every n=0,1,... .

Crossrefs

Programs

  • Magma
    I:=[0,3,6]; [n le 3 select I[n] else 21*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{0,21,7}, {0,3,6}, 50]
    CoefficientList[Series[(3 x + 6 x^2)/(1 - 21 x^2 - 7 x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    concat(0,Vec((3+6*x)/(1-21*x^2-7*x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

a(n) = (1/7)*((c(1)-c(4))*(1+3*c(1))^n + (c(2)-c(1))*(1+3*c(2))^n + (c(4)-c(2))*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) (for the proof see Witula-Slota-Warzynski paper).
G.f.: (3*x+6*x^2)/(1-21*x^2-7*x^3).

A236471 Riordan array ((1-x)/(1-2*x), x(1-x)/(1-2*x)^2).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 4, 13, 7, 1, 8, 38, 33, 10, 1, 16, 104, 129, 62, 13, 1, 32, 272, 450, 304, 100, 16, 1, 64, 688, 1452, 1289, 590, 147, 19, 1, 128, 1696, 4424, 4942, 2945, 1014, 203, 22, 1, 256, 4096, 12896, 17584, 13073, 5823, 1603, 268, 25, 1, 512, 9728
Offset: 0

Views

Author

Philippe Deléham, Jan 26 2014

Keywords

Comments

Row sums are A052936(n).
Diagonal sums are A121449(n).
The triangle T'(n,k) = T(n,k)*(-1)^(n+k) is the inverse of the Riordan array in A090285.

Examples

			Triangle begins:
1;
1, 1;
2, 4, 1;
4, 13, 7, 1;
8, 38, 33, 10, 1;
16, 104, 129, 62, 13, 1;
32, 272, 450, 304, 100, 16, 1;
64, 688, 1452, 1289, 590, 147, 19, 1;
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[(2*x^2-3*x+1)/((x^2-x)*y +4*x^2 - 4*x+1), {x,0,20}, {y,0,20}], x], y]//Flatten (* G. C. Greubel, Apr 19 2018 *)
  • Maxima
    T(n,k):=sum(binomial(m+k,2*k)*binomial(n-1,n-m),m,0,n); /* Vladimir Kruchinin, Apr 21 2015 */
    
  • PARI
    for(n=0,20, for(k=0,n, print1(sum(m=0, n, binomial(m+k,2*k)* binomial(n-1,n-m)), ", "))) \\ G. C. Greubel, Apr 19 2018

Formula

T(n,0) = A011782(n), T(n,1) = A049611(n), T(n,n) = A000012(n) = 1, T(n+1,n) = A016777(n), T(n+2,n) = A062708(n+1).
G.f.: (2*x^2-3*x+1)/((x^2-x)*y+4*x^2-4*x+1). - Vladimir Kruchinin, Apr 21 2015
T(n,k) = Sum_{m=0..n} C(m+k,2*k)*C(n-1,n-m). - Vladimir Kruchinin, Apr 21 2015
Showing 1-10 of 10 results.