cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073251 Numbers k such that k, k+1 and k+2 are nonprime and squarefree.

Original entry on oeis.org

33, 85, 93, 141, 185, 201, 213, 217, 253, 265, 285, 301, 321, 393, 445, 453, 469, 481, 517, 533, 553, 581, 589, 609, 633, 669, 697, 705, 713, 753, 777, 789, 793, 805, 813, 869, 893, 897, 901, 913, 921, 933, 957, 985, 993, 1001, 1005, 1041, 1045, 1065, 1113
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Comments

k-1 and k+3 are not squarefree. Proof: k is odd, otherwise k or k+2 would be divisible by 4. Thus k+1 is even and not divisible by 4, hence k-1 and k+3 are divisible by 4.

Crossrefs

Programs

  • Mathematica
    f[upto_]:=Module[{pp=PrimePi[upto],n},lst=Partition[Complement[Range[upto], Prime[Range[pp]]],3,1];Transpose[Select[lst,And@@SquareFreeQ/@#&]][[1]]]; f[1200] (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    isok1(k) = !isprime(k) && issquarefree(k); \\ A000469
    isok(k) = isok1(k) && isok1(k+1) && isok1(k+2); \\ Michel Marcus, Mar 25 2021

Extensions

Edited by Klaus Brockhaus, Aug 07 2006

A367695 Numbers k such that k and k+1 are both exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 5, 6, 7, 10, 13, 14, 21, 22, 23, 26, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 46, 53, 54, 55, 56, 57, 58, 61, 65, 66, 69, 70, 73, 77, 78, 82, 85, 86, 87, 88, 93, 94, 95, 96, 101, 102, 103, 104, 105, 106, 109, 110, 113, 114, 118, 119, 122, 127, 128
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2023

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 48, 478, 4734, 47195, 471707, 4716892, 47168363, 471681183, 4716806520, ... . Apparently, the asymptotic density of this sequence exists and equals Product_{p prime} (1 - 2/(p*(p+1))) = 0.47168... (A307868).

Crossrefs

Subsequence of A268335.
Cf. A307868.
Subsequences: A007674, A325058.
Similar sequences: A071318, A121495, A340152, A367696.

Programs

  • Mathematica
    expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; Select[Range[128], And @@ expOddQ /@ {#, # + 1} &]
  • PARI
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if (!(f[i, 2] % 2), return (0))); 1;}
    is(n) = isexpodd(n) && isexpodd(n+1)

A367696 Numbers k such that k and k+1 are both exponentially odious numbers (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2023

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 8, 78, 762, 7615, 76113, 761127, 7611222, 76111895, 761119135, 7611190807, ... . Apparently, the asymptotic density of this sequence exists and equals 0.761119... .

Crossrefs

Subsequence of A270428.
Subsequences: A007674, A367697.
Similar sequences: A071318, A121495, A340152, A367695.

Programs

  • Mathematica
    expOdQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ[DigitCount[#, 2, 1]] &]; Select[Range[100], And @@ expOdQ /@ {#, # + 1} &]
  • PARI
    isexpod(n) = {my(f = factor(n)); for(i=1, #f~, if (!(hammingweight(f[i, 2]) % 2), return (0))); 1;}
    is(n) = isexpod(n) && isexpod(n+1)

A240593 The smaller of a pair of consecutive composite squarefree numbers (A120944) without any prime number between them.

Original entry on oeis.org

14, 21, 33, 34, 38, 55, 57, 62, 65, 69, 74, 77, 85, 86, 91, 93, 94, 105, 110, 114, 115, 118, 119, 122, 129, 133, 141, 142, 143, 145, 154, 158, 159, 165, 174, 177, 182, 183, 185, 186, 187, 194, 201, 202, 203, 205, 206, 209, 213, 214, 215, 217, 218, 219, 221, 230, 235, 237, 246, 247, 253, 254, 258, 259, 265, 266, 273, 285, 286, 287, 290, 295, 298, 299
Offset: 1

Views

Author

Antonio Roldán, Apr 08 2014

Keywords

Comments

Supersequence of A121495.

Examples

			62 is in the sequence because A120944(20)=62, A120944(21)=65, without primes between them.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Select[Range[400],CompositeQ[#]&&SquareFreeQ[#]&],2,1], PrimePi[ #[[1]]]==PrimePi[#[[2]]]&][[All,1]] (* Harvey P. Dale, Apr 12 2020 *)
  • PARI
    freesqrcomp(n)=issquarefree(n)&&!isprime(n)
    nextfqc(n)={local(k); k=n+1; while(!freesqrcomp(k), k+=1); return(k)}
    {for(i=2, 1000, if(freesqrcomp(i) && (nextfqc(i)
    				
Showing 1-4 of 4 results.