cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121545 Coefficients of Taylor series expansion of the operad Prim L.

Original entry on oeis.org

0, 1, 1, 4, 17, 81, 412, 2192, 12049, 67891, 390041, 2276176, 13455356, 80402284, 484865032, 2947107384, 18036248337, 111046920567, 687345582787, 4274642610932, 26697307240777, 167377288848977
Offset: 0

Views

Author

N. J. A. Sloane, Oct 07 2007

Keywords

Crossrefs

Programs

  • Maple
    a := n -> ifelse(n = 0, 0, binomial(3*n - 2, n - 1)*hypergeom([2, 1 - n], [2 - 3*n], -1) / n): seq(simplify(a(n)), n = 0..21); # Peter Luschny, Oct 09 2022
  • Mathematica
    CoefficientList[Series[Sin[1/3*ArcSin[Sqrt[27*x/4]]]^2/(3/4 + Sin[1/3*ArcSin[Sqrt[27*x/4]]]^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 19 2012 *)
  • Maxima
    a(n):=sum(k*(-1)^(k+1)*binomial(3*n-k-1,n-k),k,1,n)/n; /* Vladimir Kruchinin, Oct 09 2022 */
  • PARI
    {a(n)=local(G=1); if(n<1,0,for(i=1,n,G=1+x*G^3+O(x^(n+1))); polcoeff(x*G^2/(1+x*G^2),n))} \\ Paul D. Hanna, Nov 03 2012
    
  • PARI
    x='x+O('x^22); concat(0, Vec(serreverse(x*(2*x-1)^2/(1-x)^3))) \\ Gheorghe Coserea, Aug 18 2017
    

Formula

G.f.: sin^2( (1/3)*arcsin(sqrt(27*x/4)) ) / ( 3/4 + sin^2( (1/3)*arcsin(sqrt(27*x/4)) )).
G.f.: x*G(x)^2 / (1 + x*G(x)^2), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 03 2012
From Gary W. Adamson, Jul 13 2011: (Start)
As to a signed variant for n > 0: (1, -1, 4, -17, ...), a(n) = upper left term of M^n, M = the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
-2, -2, 1, 0, 0, 0, ...
3, 3, -2, 1, 0, 0, ...
-4, -4, 3, -2, 1, 0, ...
5, 5, -4, 3, -2, 1, ...
-6, -6, 5, -4, 3, -2, ...
...
(each column is (1, -2, 3, -4, 5, ...) prepended with (0, 0, 1, 2, 3, ...) zeros by columns). (End)
Recurrence: 32*n*(2*n-1)*a(n) = 16*(11*n^2 - n - 15)*a(n-1) + 6*(278*n^2 - 1351*n + 1670)*a(n-2) + 45*(3*n-8)*(3*n-7)*a(n-3). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ 3^(3*n+1/2)/(2^(2*n+4)*n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Nov 19 2012
From Peter Bala, Feb 04 2022: (Start)
G.f. A(x) = (G(x) - 1)/(2*G(x) - 1), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
Let B(x) = 2 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + ... denote the o.g.f. of A000139. Then A(x) = x*C(x)'/C(x), where C(x) = 1 + x*(B(x) - 1).
Equivalently, exp(Sum_{n >= 1} a(n)*x^n/n) = C(x), a power series with integer coefficients. It follows that the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all prime p and positive integers n and k. (End)
a(n) = (1/n)*Sum_{k=1..n} k*(-1)^(k+1)*C(3*n-k-1,n-k). - Vladimir Kruchinin, Oct 09 2022
a(n) = binomial(3*n-2, n-1)*hypergeom([2, 1-n], [2-3*n], -1) / n for n >= 1. - Peter Luschny, Oct 09 2022

Extensions

More terms from Olivier Gérard, Oct 11 2007