cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A121616 Primes of form (k+1)^5 - k^5 = A022521(k).

Original entry on oeis.org

31, 211, 4651, 61051, 371281, 723901, 1803001, 2861461, 4329151, 4925281, 7086451, 7944301, 14835031, 19611901, 23382031, 44119351, 54664711, 86548801, 97792531, 162478501, 189882031, 267217051, 293109961, 306740281, 490099501
Offset: 1

Views

Author

Alexander Adamchuk, Aug 10 2006

Keywords

Comments

Might be called "Pentan primes" (in analogy with Cuban primes, of the form (n+1)^3-n^3), or "Nexus primes of order 5" (cf. link below).
Indices k such that Nexus number of order 5 (or A022521(k-1) = k^5 - (k-1)^5) is prime are listed in A121617 = {2, 3, 6, 11, 17, 20, 25, 28, 31, 32, 35, 36, 42, 45, 47, 55, 58, 65, 67, 76, 79, 86, 88, 89, 100,...}.
The last digit is always 1 because 5 is the Pythagorean prime A002144(1). a(1) = 31 is the Mersenne prime A000668(3).

Crossrefs

Programs

  • Magma
    [a: n in [0..110] | IsPrime(a) where a is (n+1)^5-n^5]; // Vincenzo Librandi, Jan 20 2020
  • Mathematica
    Select[Table[n^5 - (n-1)^5, {n,1,200}],PrimeQ]
    Select[Differences[Range[100]^5],PrimeQ] (* Harvey P. Dale, Nov 03 2021 *)

A121618 Nexus primes of order 7 or primes of form n^7 - (n-1)^7 = A022523(n-1).

Original entry on oeis.org

127, 14197, 543607, 1273609, 2685817, 5217031, 16344637, 141903217, 1928294551, 8258704609, 14024867221, 22815424087, 30914273881, 91154730577, 116160677851, 183510024391, 280667317267, 552932810431, 1517045588059
Offset: 1

Views

Author

Alexander Adamchuk, Aug 10 2006

Keywords

Comments

Indices n such that Nexus number of 7 order (or A022523(n-1) = n^7 - (n-1)^7) is prime are listed in A121619(n) = {2,4,7,8,9,10,12,17,26, 33,36,39,41,49,51,55,59,66,78,79,80,88,96,98,...}. a(1) = 127 is Mersenne prime A000668(4).

Crossrefs

Programs

  • Mathematica
    Select[Table[n^7 - (n-1)^7, {n,1,200}],PrimeQ]
    Select[Differences[Range[100]^7],PrimeQ] (* Harvey P. Dale, Mar 27 2025 *)
  • PARI
    select(isprime,vector(1000,n,n^7-(n-1)^7)) \\ Charles R Greathouse IV, May 15 2013

A121620 Smallest prime of the form k^p - (k-1)^p, where p = prime(n).

Original entry on oeis.org

3, 7, 31, 127, 313968931, 8191, 131071, 524287, 777809294098524691, 68629840493971, 2147483647, 114867606414015793728780533209145917205659365404867510184121, 44487435359130133495783012898708551, 1136791005963704961126617632861
Offset: 1

Views

Author

Alexander Adamchuk, Aug 10 2006

Keywords

Comments

All Mersenne primes of form 2^p-1 = {3, 7, 31, 127, 8191,...} belong to a(n). Mersenne prime A000668(n) = a(k) when prime(k) = A000043(n). Last digit is always 1 for Nexus numbers of form n^p - (n-1)^p with p = {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101,...} = A004144(n) Pythagorean primes: primes of form 4n+1.

Crossrefs

Programs

  • Mathematica
    t = {}; n = 0; While[n++; p = Prime[n]; k = 1; While[q = (k + 1)^p - k^p; ! PrimeQ[q], k++]; q < 10^100, AppendTo[t, q]]; t (* T. D. Noe, Feb 12 2013 *)
    spf[p_]:=Module[{k=2},While[CompositeQ[k^p-(k-1)^p],k++];k^p-(k-1)^p]; Table[spf[p],{p,Prime[ Range[20]]}] (* Harvey P. Dale, Apr 01 2024 *)

A121617 Numbers n such that A022521(n-1) = n^5 - (n-1)^5 is prime.

Original entry on oeis.org

2, 3, 6, 11, 17, 20, 25, 28, 31, 32, 35, 36, 42, 45, 47, 55, 58, 65, 67, 76, 79, 86, 88, 89, 100, 102, 105, 110, 111, 113, 121, 122, 145, 149, 166, 175, 179, 193, 198, 211, 218, 223, 226, 230, 240, 244, 245, 256, 262, 287, 292, 295, 297, 298, 300
Offset: 1

Views

Author

Alexander Adamchuk, Aug 10 2006

Keywords

Comments

The elements of A022521 are sometimes called Nexus number of order 5, see there.
The terms should have 1 subtracted, since indices of primes in A022521 are 1, 2, 5, 10, 16, 19, 24, 27, 30, 31, 34, 35, 41, 44, 46, .... - M. F. Hasler, Jan 27 2013
Corresponding Nexus Primes of order 5 (or primes of form (n+1)^5 - n^5 = A022521(n)) are listed in A121616 = {31, 211, 4651, 61051, 371281, 723901, 1803001, 2861461, ...}.

Crossrefs

Programs

A221977 Number of primes of the form (x+1)^7 - x^7 less than 10^n.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 7, 8, 10, 14, 18, 25, 34, 46, 60, 89, 120, 165, 227, 298, 415, 590, 821, 1152, 1606, 2240, 3188, 4438, 6208, 8714, 12280, 17368, 24560, 34821, 49413, 70581, 100856, 143955, 205291, 293061, 419256, 600213, 858870, 1230523, 1764914, 2532078
Offset: 1

Views

Author

Vladimir Pletser, Feb 02 2013

Keywords

Comments

Number of primes less than 10^n and equal to the difference of two consecutive seventh powers (x+1)^7 - x^7 = 7x(x+1)(x^2+x+1)^2+1 (A121618). Values of x = A121619 - 1. Sequence of number of primes less than 10^n and of the form (x+1)^7 - x^7 have similar characteristics to similar sequences for natural primes (A006880), cuban primes (A113478) and primes of the form (x+1)^5 - x^5 (A221846).

Programs

  • Mathematica
    nn = 20; t = Table[0, {nn}]; n = 0; While[n++; p = (n + 1)^7 - n^7; p < 10^nn,If[PrimeQ[p], m = Ceiling[Log[10, p]]; t[[m]]++]]; Accumulate[t] (* T. D. Noe, Feb 04 2013 *)

A221978 Number of primes of the form (x+1)^7 - x^7 having n digits.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 1, 1, 2, 4, 4, 7, 9, 12, 14, 29, 31, 45, 62, 71, 117, 175, 231, 331, 454, 634, 948, 1250, 1770, 2506, 3566, 5088, 7192, 10261, 14592, 21168, 30275, 43099, 61336, 87770, 126195, 180957, 258657, 371653, 534391, 767164, 1103259, 1583584, 2276179
Offset: 1

Views

Author

Vladimir Pletser, Feb 02 2013

Keywords

Comments

Number of primes having n digits and equal to the difference of two consecutive seventh powers (x+1)^7 - x^7 = 7x(x+1)(x^2+x+1)^2+1 (A121618). Values of x = A121619 - 1. Sequence of number of primes having n digits and of the form (x+1)^7 - x^7 have similar characteristics to similar sequences for natural primes (A006879), cuban primes (A221792) and primes of the form (x+1)^5 - x^5 (A221847).

Programs

  • Mathematica
    nn = 30; t = Table[0, {nn}]; n = 0; While[n++; p = (n + 1)^7 - n^7; p < 10^nn, If[PrimeQ[p], m = Ceiling[Log[10, p]]; t[[m]]++]]; t (* T. D. Noe, Feb 04 2013 *)

A221979 Partial sums of primes of the form (n+1)^7 - n^7.

Original entry on oeis.org

127, 14324, 557931, 1831540, 4517357, 9734388, 26079025, 167982242, 2096276793, 10354981402, 24379848623, 47195272710, 78109546591, 169264277168, 285424955019, 468934979410, 749602296677, 1302535107108, 2819580695167, 4457920826414
Offset: 1

Views

Author

Vladimir Pletser, Feb 02 2013

Keywords

Comments

Partial sums of primes equal to the difference of two consecutive seventh powers (x+1)^7 - x^7 = 7x(x+1)(x^2+x+1)^2+1 (A121618). Values of x = A121619 - 1. Number of primes equal (x+1)^7 - x^7 < 10^(n) in A221977. Partial sums of number of primes of the form (x+1)^7 - x^7 have similar characteristics to similar sequences for natural primes (A007504), cuban primes (A221793) and primes of the form (x+1)^5 - x^5 (A221848).

Programs

  • Mathematica
    Accumulate[Select[Differences[Range[80]^7],PrimeQ]] (* Harvey P. Dale, Jul 09 2024 *)

A221980 Number of primes of the form (x+1)^7 - x^7 with x <= 10^n.

Original entry on oeis.org

1, 6, 24, 161, 1094, 8283, 66790
Offset: 0

Views

Author

Vladimir Pletser, Feb 02 2013

Keywords

Comments

Number of primes equal to the difference of two consecutive seventh powers (x+1)^7 - x^7 = 7x(x+1)(x^2+x+1)^2+1 (A121618). Values of x = A121619 - 1. Sequence of number of primes of the form (x+1)^7 - x^7 with x <= 10^n have similar characteristics to similar sequences for natural primes, cuban primes (A221794) and primes of the form (x+1)^5 - x^5 (A221849).

Programs

Showing 1-8 of 8 results.