A121628 Nonnegative k such that 3*k + 1 is a perfect cube.
0, 21, 114, 333, 732, 1365, 2286, 3549, 5208, 7317, 9930, 13101, 16884, 21333, 26502, 32445, 39216, 46869, 55458, 65037, 75660, 87381, 100254, 114333, 129672, 146325, 164346, 183789, 204708, 227157, 251190, 276861, 304224, 333333, 364242, 397005
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[3*n*(1+3*n+3*n^2): n in [1..40]]; // Vincenzo Librandi, Apr 11 2012
-
Mathematica
CoefficientList[Series[3 (7 + 10 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 11 2012 *) LinearRecurrence[{4,-6,4,-1},{0,21,114,333},40] (* Harvey P. Dale, Mar 08 2018 *)
Formula
a(n) = 3*(n - 1)*(3*n^2 - 3*n + 1) with n>0. Corresponding cubes are 3*a(n) + 1 = (3*n - 2)^3.
G.f.: 3*x^2*(7 + 10*x + x^2)/(1-x)^4. - Colin Barker, Apr 11 2012
Extensions
0 added and b-file updated by Bruno Berselli, May 23 2017
Comments