A121707 Numbers n > 1 such that n^3 divides Sum_{k=1..n-1} k^n = A121706(n).
35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 275, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 455, 473, 475, 493, 497, 515, 517, 527, 533, 535, 539, 551, 559, 575, 581, 583, 589, 611
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1371 terms from Robert Israel)
- T. Ordowski, Density of anti-Carmichael numbers, SeqFan Mailing List, Feb 17 2021.
- Don Reble, Comments on A121707
Crossrefs
Programs
-
Maple
filter:= n -> add(k &^ n mod n^3, k=1..n-1) mod n^3 = 0: select(filter, [$2..1000]); # Robert Israel, Oct 08 2015
-
Mathematica
fQ[n_] := Mod[Sum[PowerMod[k, n, n^3], {k, n - 1}], n^3] == 0; Select[ Range[2, 611], fQ] (* Robert G. Wilson v, Apr 04 2011 and slightly modified Aug 02 2018 *)
-
PARI
is(n)=my(n3=n^3);sum(k=1,n-1,Mod(k,n3)^n)==0 \\ Charles R Greathouse IV, May 09 2013
-
PARI
for(n=2, 1000, if(sum(k=1, n-1, k^n) % n^3 == 0, print1(n", "))) \\ Altug Alkan, Oct 15 2015
-
Sage
# after Andrzej Schinzel def isA121707(n): if n == 1 or is_even(n): return False return n.divides(sum(k^(n-1) for k in (1..n-1))) [n for n in (1..611) if isA121707(n)] # Peter Luschny, Jul 18 2019
Extensions
Sequence corrected by Robert G. Wilson v, Apr 04 2011
Comments