cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121801 Expansion of 2*x^2*(3-x)/((1+x)*(1-3*x+x^2)).

Original entry on oeis.org

0, 6, 10, 32, 78, 210, 544, 1430, 3738, 9792, 25630, 67106, 175680, 459942, 1204138, 3152480, 8253294, 21607410, 56568928, 148099382, 387729210, 1015088256, 2657535550, 6957518402, 18215019648, 47687540550, 124847601994
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 27 2006

Keywords

Comments

a(n) = the area of an irregular quadrilateral with vertices at the points (L(n),L(n+2)), (F(n+2),F(n+3)), (F(n+3),F(n+2)) and (L(n+2),L(n)), with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, Jun 16 2014
a(n+1) appears also as the fourth component of the square of [F(n), F(n+1), F(n+2), F(n+3)], for n >= 0, where F(n) = A000045(n), in the Clifford algebra Cl_2 over Euclidean 2-space. The whole quartet of sequences for this square is [-A248161(n), A079472(n+1), A059929(n), a(n+1)]. See the Oct 15 2014 comment in A147973 where also a reference is given. - Wolfdieter Lang, Nov 01 2014

Programs

  • GAP
    List([1..30], n-> 2*(Lucas(1,-1,2*n+1)[2] +4*(-1)^n)/5 ); # G. C. Greubel, Jul 22 2019
  • Magma
    I:=[0,6,10]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 02 2014
    
  • Magma
    [2*(Lucas(2*n+1) +4*(-1)^n)/5: n in [1..30]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    c[i_, k_] := Floor[Mod[i/2^k, 2]] b[i_, k_] := If[c[i, k] == 0 && c[ i, k + 1] == 0, 0, If[c[i, k] == 1 && c[i, k + 1] == 1, 0, 1]] n = 4 - 1; M = Table[If[Sum[b[i, k]*b[j, k], {k, 0, n}] == 0, 1, 0], {j, 0, n}, {i, 0, n}] v[1] = {0, 1, 2, 3} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] Det[M - x*IdentityMatrix[4]] Factor[%] aaa = Table[x /. NSolve[Det[M - x*IdentityMatrix[4]] == 0, x][[n]], {n, 1, 4}] Abs[aaa] a1 = Table[N[a[[n]]/a[[n - 1]]], {n, 7, 50}]
    CoefficientList[Series[2*x*(3-x)/((1+x)*(1-3*x+x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 16 2014 *)
    LinearRecurrence[{2,2,-1},{0,6,10},30] (* Harvey P. Dale, Jan 06 2015 *)
    With[{F=Fibonacci}, Table[2*(F[n]*F[n+1] +(-1)^n), {n,30}]] (* G. C. Greubel, Jul 22 2019 *)
  • PARI
    concat(0,Vec(2*(3-x)/((1+x)*(1-3*x+x^2))+O(x^30))) \\ Charles R Greathouse IV, Sep 25 2012
    
  • PARI
    vector(30, n, f=fibonacci; 2*(f(n)*f(n+1)+(-1)^n) ) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [2*(lucas_number2(2*n+1,1,-1) +4*(-1)^n)/5 for n in (1..30)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = -2*A121646(n+1).
G.f.: 2*x^2*(3-x)/((1+x)*(x^2-3*x+1)) (see name).
From Wolfdieter Lang, Nov 01 2014: (Start)
G.f.: (-10 + 8/(1+x) + 2*(1+x)/(1-3*x+x^2))/5 (partial fraction decomposition).
a(n) = (8*(-1)^n + 2*(F(2*(n+1)) + F(2*n)))/5 for n >= 1. a(0) = 0.
(End)
a(n) = 2*(Fibonacci(n)*Fibonacci(n+1) + (-1)^n). - G. C. Greubel, Jul 22 2019

Extensions

Edited by the Associate Editors of the OEIS, Aug 18 2009