cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122194 Numbers that are the sum of exactly two sets of Fibonacci numbers.

Original entry on oeis.org

3, 5, 6, 9, 10, 15, 17, 25, 28, 41, 46, 67, 75, 109, 122, 177, 198, 287, 321, 465, 520, 753, 842, 1219, 1363, 1973, 2206, 3193, 3570, 5167, 5777, 8361, 9348, 13529, 15126, 21891, 24475, 35421, 39602, 57313, 64078, 92735, 103681, 150049, 167760, 242785
Offset: 1

Views

Author

Ron Knott, Aug 25 2006

Keywords

Examples

			a(1)=3 as 3 is the sum of just 2 Fibonacci sets {3=Fibonacci(4)} and {1=Fibonacci(2), 2=Fibonacci(3)};
a(2)=5 as 5 is sum of Fibonacci sets {5} and {2,3} only.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n mod 2=0 then return 2*Fibonacci(Int((n+6)/2)) -1;
        else return Lucas(1,-1, Int((n+5)/2))[2] -1;
        fi;
      end;
    List([1..50], n-> a(n) ); # G. C. Greubel, Jul 13 2019
  • Magma
    f:=Floor; [(n mod 2) eq 0 select 2*Fibonacci(f((n+6)/2))-1 else Lucas(f((n+5)/2))-1: n in [1..50]]; // G. C. Greubel, Jul 13 2019
    
  • Maple
    fib:= combinat[fibonacci]:
    lucas:=n->fib(n-1)+fib(n+1):
    a:=n -> if n mod 2 = 0 then 2 *fib(n/2+3) -1 else lucas((n+1)/2+2)-1 fi:
    seq(a(n), n=1..50);
  • Mathematica
    LinearRecurrence[{1, 1, -1, 1, -1}, {3, 5, 6, 9, 10, 15}, 40] (* Vincenzo Librandi, Jul 25 2017 *)
    Table[If[Mod[n,2]==0, 2*Fibonacci[(n+6)/2]-1, LucasL[(n+5)/2]-1], {n,50}] (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    vector(50, n, f=fibonacci; if(n%2==0, 2*f((n+6)/2)-1, f((n+7)/2) + f((n+3)/2)-1)) \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    def a(n):
        if (mod(n,2)==0): return 2*fibonacci((n+6)/2) - 1
        else: return lucas_number2((n+5)/2, 1,-1) -1
    [a(n) for n in (1..50)] # G. C. Greubel, Jul 13 2019
    

Formula

a(2n-1) = A000032(n+2) - 1,
a(2n) = 2*A000045(n+3) - 1.
a(2n-1) = A001610(n+2), a(2n) = A001595(n+2).
a(1)=3, a(2)=5, a(3)=6, a(4)=9, a(n) = a(n-2) + a(n-4) + 1, n > 4.
G.f.: (3 + 2*x - 2*x^2 + x^3 - 3*x^4)/(1-x-x^2+x^3-x^4+x^5).
a(n) = A272632(n)-1. - R. J. Mathar, Jan 13 2023