cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A010818 Expansion of Product (1 - x^k)^10 in powers of x.

Original entry on oeis.org

1, -10, 35, -30, -105, 238, 0, -260, -165, 140, 1054, -770, -595, 0, -715, 2162, 455, 0, -2380, -1820, 2401, -680, 1495, 3080, 1615, -6958, -1925, 0, 0, 5100, -1442, 8330, -5355, 1330, 0, -16790, 0, 8190, 8265, 0, 1918, 0, 8415, -10230, -7140, -9362
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 - 10*x + 35*x^2 - 30*x^3 - 105*x^4 + 238*x^5 - 260*x^7 - 165*x^8 + ...
G.f. = q^5 - 10*q^17 + 35*q^29 - 30*q^41 - 105*q^53 + 238*q^65 - 260*q^89 + ...
		

References

  • Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

Crossrefs

Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^10, {x, 0, n}]; (* Michael Somos, Jun 24 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^10, n))}; /* Michael Somos, Jun 09 2011 */
    
  • PARI
    {a(n) = local(m, x, y, z); if( n<0, 0, m = 12*n + 5; z = 0; for( x = -sqrtint(m), sqrtint(m), if( x%6 != 1, next); if( issquare( m - x^2, &y), if( y%6 == 2, y = -y); if( y%6 == 4, z += x*y * (x*x - y*y) ))); z / 6)}; /* Michael Somos, Jun 09 2011 */
    
  • PARI
    {a(n) = local(A, p, e, i, x, y, a0, a1); if( n<0, 0, n = 12*n + 5; A = factor(n); 1 / 48 * prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p<5, 0, if( p%12 > 6, if( e%2, 0, p^(2*e)), forstep( i = 1, sqrtint( p), 2, if( issquare( p - i^2, &y), x=i; break)); if( p%12 == 5, a1 = 8 * x*y * (x-y) * (x+y) * (-1)^((x%6==1) + (y%6==4)), a1 = 2 * (x^2-y^2+2*x*y) * (x^2-y^2-2*x*y) * (-1)^(x%6==3) ); a0 = 1; y = a1; for( i=2, e, x = y * a1 - p^4 * a0; a0=a1; a1=x); a1 )))))}; /* Michael Somos, Jun 24 2013 */

Formula

Expansion of f(-x)^10 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-5/12) * eta(q)^10 in powers of q. - Michael Somos, Jun 09 2011
a(n) = b(12*n + 5) / 48 where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 7 or 11 (mod 12), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 or 5 (mod 12). - Michael Somos, Jun 24 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12^5 (t/i)^5 f(t) where q = exp(2 Pi i t). - Michael Somos, Jan 06 2014
G.f.: Product_{k>0} (1 - x^k)^10. a(49*n + 20) = 2401 * a(n).
48 * a(n) = A234565(3*n + 1). a(7*n + 2) = 0 unless n == 2 (mod 7). - Michael Somos, Jul 18 2014
a(0) = 1, a(n) = -(10/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-10*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are congruent to 7 (mod 12) or 11 (mod 12). Then a( M^2*n + 10*(M^2 - 1)/24 ) = M^4*a(n). See Cooper et al., Theorem 1. - Peter Bala, Dec 01 2020

A234565 Expansion of f(-q^3)^2 * Q(q^3) + 48 * q * f(-q^3)^10 in powers of q.

Original entry on oeis.org

1, 48, 0, 238, -480, 0, 1679, 1680, 0, 2162, -1440, 0, 2401, -5040, 0, -6958, 11424, 0, -1442, 0, 0, -23040, -12480, 0, 1918, -7920, 0, -9362, 6720, 0, 14641, 50592, 0, 0, -36960, 0, 80640, -28560, 0, -20398, 0, 0, 28083, -34320, 0, 64078, 103776, 0, -38398
Offset: 0

Views

Author

Michael Somos, Jan 06 2014

Keywords

Comments

f(-q) (g.f. A010815) and Q(q) (g.f. A004009) are Ramanujan q-series.

Examples

			G.f. = 1 + 48*x + 238*x^3 - 480*x^4 + 1679*x^6 + 1680*x^7 + 2162*x^9 + ...
G.f. = q + 48*q^5 + 238*q^13 - 480*q^17 + 1679*q^25 + 1680*q^29 + 2162*q^37 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; Q:= (eta[q^3]^24 + 256*eta[q^6]^24)/( eta[q^3]*eta[q^6])^8; a:= CoefficientList[Series[q^(-1/4)*eta[q^3]^2*(48*q^(0/4)*eta[q^3]^8 + Q), {q, 0, 55}], q]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 07 2018 *)
  • PARI
    {a(n) = local(A, B); if( n<0, 0, A = x * O(x^n); B = 64 * x^3 * (eta(x^12 + A) / eta(x^3 + A))^8; polcoeff( 48 * x * eta(x^3 + A)^10 + (1 + 4*B + B^2) * eta(x^3 + A)^18 / eta(x^6 + A)^8, n))}
    
  • PARI
    {a(n) = local(A, p, e, i, x, y, a0, a1); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p<5, 0, if( p%12 > 6, if( e%2, 0, p^(2*e)), forstep( i = 1, sqrtint( p), 2, if( issquare( p - i^2, &y), x=i; break)); if( p%12 == 5, a1 = 8 * x*y * (x-y) * (x+y) * (-1)^((x%6==1) + (y%6==4)), a1 = 2 * (x^2-y^2+2*x*y) * (x^2-y^2-2*x*y) * (-1)^(x%6==3) ); a0 = 1; y = a1; for( i=2, e, x = y * a1 - p^4 * a0; a0=a1; a1=x); a1 )))))}

Formula

G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12^5 (t/i)^5 f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 7 or 11 (mod 12), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 or 5 (mod 12).
a(3*n + 2) = 0. a(3*n) = A122266(n). a(3*n + 1) = 48 * A010818(n).
Showing 1-2 of 2 results.