cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159854 Riordan array (1-x,x/(1-x)).

Original entry on oeis.org

1, -1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 3, 1, 0, 0, 1, 4, 6, 4, 1, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 24 2009

Keywords

Comments

From Peter Bala, Sep 13 2015: (Start)
The m-th power of the array is the Riordan array (1 - m*x, x/(1 - m*x)).
This array, call it M, is a pseudo-involution in the Riordan group, that is, M*D has order 2, where D = (1,-z) is the diagonal matrix with alternating 1's and -1's on the main diagonal.
This array belongs to the subgroups G := { (f(x)/(x*f'(x)),f(x)): f(x) = x + c(2)*x^2 + c(3)*x^3 + ..., c(i) integral } and H := { (x/f(x),f(x)): f(x) = x + c(2)*x^2 + c(3)*x^3 + ..., c(i) integral } of the Riordan group. Moreover, this array generates the infinite cyclic group (G intersect H). Compare with Pascal's triangle (A007318) which generates the intersection of the Bell subgroup and the hitting-time subgroup of the Riordan group.
(End)

Examples

			Triangle begins:
   1
  -1,1
   0,0,1
   0,0,1,1
   0,0,1,2,1
   0,0,1,3,3,1
...
		

Crossrefs

Cf. A144225. - R. J. Mathar, Oct 24 2009

Programs

  • GAP
    Flat(List([0..12],n->List([0..n],k->Binomial(n,k)-2*Binomial(n-1,n-k-1)+Binomial(n-2,n-k-2)))); # Muniru A Asiru, Mar 22 2018
    
  • Magma
    /* As triangle */ [[Binomial(n,n-k)-2*Binomial(n-1,n-k-1)+ Binomial(n-2,n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 11 2019
  • Maple
    seq(seq( binomial(n-2,k-2), k = 0..n), n = 0..12); # Peter Bala, Mar 20 2018
  • Mathematica
    Table[Binomial[n-2, k-2], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 11 2019 *)
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1-x, x/(1-x), 8) # Peter Luschny, Mar 21 2018
    

Formula

Exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(x^2/2! + x^3/3!) = x^2/2! + 4*x^3/3! + 10*x^4/4! + 20*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
T(n,k) = C(n,n-k) - 2*C(n-1,n-k-1) + C(n-2,n-k-2), where C(n,k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0. Cf. A159855. - Peter Bala, Mar 20 2018
T(n,k) = Sum_{i=0..n-k} binomial(n+1, n-k-i)*Stirling2(i + m + 1, i+1) *(-1)^i, where m = 1 for n >= 0, 0 <= k <= n. See A007318, A370516 for m=0 and m=2. - Igor Victorovich Statsenko, Feb 26 2023

A122434 Expansion of (1+x)^3/(1+x+x^2).

Original entry on oeis.org

1, 2, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0
Offset: 0

Views

Author

Paul Barry, Sep 04 2006

Keywords

Comments

Row sums of number triangle A122433. Binomial transform is A077859.

Programs

  • Mathematica
    CoefficientList[Series[(1+x)^3/(1+x+x^2),{x,0,70}],x] (* or *) PadRight[ {1,2,0},71,{-1,1,0}] (* Harvey P. Dale, Apr 25 2012 *)

Formula

a(n) = 2*sqrt(3)*cos(2*Pi*n/3+Pi/6)/3+C(1,n)+C(0,n).
a(n) = -A049347(n) if n>=2 . - R. J. Mathar, Feb 08 2008

A375550 Triangle read by rows: T(m, n, k) = binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1) for m = 4.

Original entry on oeis.org

1, 6, 1, 25, 7, 1, 88, 32, 8, 1, 280, 120, 40, 9, 1, 832, 400, 160, 49, 10, 1, 2352, 1232, 560, 209, 59, 11, 1, 6400, 3584, 1792, 769, 268, 70, 12, 1, 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1, 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1
Offset: 0

Views

Author

Peter Luschny, Sep 23 2024

Keywords

Comments

Triangle T(m,n,k) is a Riordan array of the form ((1-x)^(m-1)*(1-2x)^(-m-1), x/(1-x)), for m = 3. - Igor Victorovich Statsenko, Feb 08 2025

Examples

			Triangle starts:
  [0]     1;
  [1]     6,     1;
  [2]    25,     7,     1;
  [3]    88,    32,     8,    1;
  [4]   280,   120,    40,    9,    1;
  [5]   832,   400,   160,   49,   10,    1;
  [6]  2352,  1232,   560,  209,   59,   11,   1;
  [7]  6400,  3584,  1792,  769,  268,   70,  12,  1;
  [8] 16896,  9984,  5376, 2561, 1037,  338,  82, 13,  1;
  [9] 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1;
  ...
Seen as an array of the columns:
  [0] 1,  6, 25,  88,  280,  832,  2352,  6400,  16896, ...
  [1] 1,  7, 32, 120,  400, 1232,  3584,  9984,  26880, ...
  [2] 1,  8, 40, 160,  560, 1792,  5376, 15360,  42240, ...
  [3] 1,  9, 49, 209,  769, 2561,  7937, 23297,  65537, ...
  [4] 1, 10, 59, 268, 1037, 3598, 11535, 34832, 100369, ...
  [5] 1, 11, 70, 338, 1375, 4973, 16508, 51340, 151709, ...
  [6] 1, 12, 82, 420, 1795, 6768, 23276, 74616, 226325, ...
		

Crossrefs

Column k: A055585 (k=0), A001794 (k=1), A001789 (k=2), A027608 (k=3), A055586 (k=4).
Cf. A145018 (diagonal n-2), A375549 (row sums), A049612 (alternating row sums), A122433.

Programs

  • Maple
    T := (m, n, k) -> binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1);
    for n from 0 to 9 do seq(simplify(T(4, n, k)), k = 0..n) od;
    # As a binomial sum:
    T := (m, n, k) -> add(binomial(m + j, m)*binomial(n + 1, n - (j + k)), j = 0..n-k):
    for n from 0 to 9 do [n], seq(T(3, n, k), k = 0..n) od;
    # Alternative, generating the array of the columns:
    cgf := k -> (1 - x)^(2 - k) / (1 - 2*x)^4:
    ser := (k, len) -> series(cgf(k), x, len + 2):
    Tcol := (k, len) -> seq(coeff(ser(k, len), x, j), j = 0..len):
    seq(lprint([k], Tcol(k, 8)), k = 0..6);

Formula

T(m, n, k) = Sum_{j=0..n-k} binomial(m + j, m)*binomial(n + 1, n - (j + k)) for m = 3.
G.f. of column k: (1 - x)^(2 - k) / (1 - 2*x)^4.
Showing 1-3 of 3 results.