A122455 a(n) = Sum_{k=0..n} C(n,k)*S2(n,k). Binomial convolution of the Stirling numbers of the 2nd kind. Also sum of the rows of A122454.
1, 1, 3, 13, 71, 456, 3337, 27203, 243203, 2357356, 24554426, 272908736, 3218032897, 40065665043, 524575892037, 7197724224361, 103188239447115, 1541604242708064, 23945078236133674, 385890657416861532, 6440420888899573136, 111132957321230896024
Offset: 0
Examples
A098546(n) begins 1 2 1 3 3 1 4 6 6 4 1 ... A036040(n) begins 1 1 1 1 3 1 1 4 3 6 1 ... so A122454(n) begins 1 2 1 3 9 1 4 24 18 24 1 ... and the present sequence begins 1 3 13 71 ... with A000041 entries per row.
References
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, pages 58-62.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Wikipedia, Green's relations
- Wikipedia, Transformation semigroup
Crossrefs
Programs
-
Magma
[(&+[Binomial(n,k)*StirlingSecond(n,k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Feb 07 2019
-
Maple
sortAbrSteg := proc(L1,L2) local i ; if nops(L1) < nops(L2) then RETURN(true) ; elif nops(L2) < nops(L1) then RETURN(false) ; else for i from 1 to nops(L1) do if op(i,L1) < op(i,L2) then RETURN(false) ; fi ; od ; RETURN(true) ; fi ; end: A098546 := proc(n,k) local prts,m ; prts := combinat[partition](n) ; prts := sort(prts, sortAbrSteg) ; if k <= nops(prts) then m := nops(op(k,prts)) ; binomial(n,m) ; else 0 ; fi ; end: M3 := proc(L) local n,k,an,resul; n := add(i,i=L) ; resul := factorial(n) ; for k from 1 to n do an := add(1-min(abs(j-k),1),j=L) ; resul := resul/ (factorial(k))^an /factorial(an) ; od ; end: A036040 := proc(n,k) local prts,m ; prts := combinat[partition](n) ; prts := sort(prts, sortAbrSteg) ; if k <= nops(prts) then M3(op(k,prts)) ; else 0 ; fi ; end: A122454 := proc(n,k) A098546(n,k)*A036040(n,k) ; end: A122455 := proc(n) add(A122454(n,k),k=1..combinat[numbpart](n)) ; end: seq(A122455(n),n=1..18) ; # R. J. Mathar, Jul 17 2007 # Alternatively: A122455 := n -> add(binomial(n,k)*Stirling2(n,k),k=0..n): seq(A122455(n),n=0..21); # Peter Luschny, Aug 11 2015
-
Mathematica
Table[Sum[Binomial[n, k]*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
-
PARI
a(n)= polcoeff(sum(k=0,n,binomial(n,k)*x^k/prod(i=0,k,1-i*x +x*O(x^n))),n) \\ Paul D. Hanna, Oct 07 2007
-
PARI
a(n)=sum(k=0,n, binomial(n,k) * stirling(n,k,2) ); /* Joerg Arndt, Jun 16 2012 */
-
Sage
[sum(binomial(n,k)*stirling_number2(n,k) for k in (0..n)) for n in range(20)] # G. C. Greubel, Feb 07 2019
Formula
a(n) = [x^n] Sum_{k=0..n} C(n,k) * x^k / [Product_{i=0..k} (1 - i*x)]; equivalently, a(n) = Sum_{k=0..n} C(n,k) * S2(n,k), where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind. - Paul D. Hanna, Oct 07 2007
Extensions
More terms from R. J. Mathar, Jul 17 2007
Definition modified by Olivier Gérard, Oct 23 2012
a(0)=1 prepended by Alois P. Heinz, Sep 17 2017
Comments