cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A134055 a(n) = Sum_{k=1..n} C(n-1,k-1) * S2(n,k) for n>0, a(0)=1, where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.

Original entry on oeis.org

1, 1, 2, 8, 41, 252, 1782, 14121, 123244, 1169832, 11960978, 130742196, 1518514076, 18645970943, 241030821566, 3268214127548, 46338504902485, 685145875623056, 10538790233183702, 168282662416550040, 2784205185437851772, 47646587512911994120
Offset: 0

Views

Author

Paul D. Hanna, Oct 08 2007

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 41*x^4 + 252*x^5 + 1782*x^6 + 14121*x^7 +...
where
A(x) = 1 + x/(1-x)*exp(-x/(1-x)) + 2^2*x^2/(1-2*x)^2*exp(-2*x/(1-2*x))/2! + 3^3*x^3/(1-3*x)^3*exp(-3*x/(1-3*x))/3! + 4^4*x^4/(1-4*x)^4*exp(-4*x/(1-4*x))/4! +...
simplifies to a power series in x with integer coefficients.
Illustrate the definition of the terms by:
a(4) = 1*1 + 3*7 + 3*6 + 1*1 = 41;
a(5) = 1*1 + 4*15 + 6*25 + 4*10 + 1*1 = 252;
a(6) = 1*1 + 5*31 + 10*90 + 10*65 + 5*15 + 1*1 = 1782.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local b; b:=
          proc(h, m) option remember; `if`(h=0,
            binomial(n-1, m-1), m*b(h-1, m)+b(h-1, m+1) )
          end; b(n, 0)
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,k-1] * StirlingS2[n,k],{k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Aug 11 2014 *)
  • PARI
    a(n)=if(n==0,1,sum(k=1, n, binomial(n-1, k-1)*polcoeff(1/prod(i=0, k, 1-i*x +x*O(x^(n-k))), n-k)))
    
  • PARI
    a(n)=polcoeff(sum(k=0,n+1,(k*x)^k/(1-k*x)^k*exp(-k*x/(1-k*x+x*O(x^n)))/k!),n)
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Nov 04 2012

Formula

O.g.f.: Sum_{n>=0} (n*x)^n/(1-n*x)^n * exp(-n*x/(1-n*x)) / n!. - Paul D. Hanna, Nov 04 2012
From Alois P. Heinz, Jun 24 2023: (Start)
a(n) mod 2 = A037011(n) for n >= 1.
a(n) mod 2 = 1 <=> n in { A048297 } or n = 0. (End)

Extensions

An initial '1' was added and definition changed slightly by Paul D. Hanna, Nov 04 2012

A211210 a(n) = Sum_{k=0..n} binomial(n, k)*|S1(n, k)|.

Original entry on oeis.org

1, 1, 3, 16, 115, 1021, 10696, 128472, 1734447, 25937683, 424852351, 7554471156, 144767131444, 2971727661124, 65013102375404, 1509186299410896, 37032678328740751, 957376811266995031, 25999194631060525009, 739741591417352081464, 22000132609456951524051
Offset: 0

Views

Author

Olivier Gérard, Oct 23 2012

Keywords

Comments

Binomial convolution of the unsigned Stirling numbers of the first kind.
Row sums of triangle A187555.

Crossrefs

Cf. A317274 (signed S1), A187555, A134090, A211211.
Cf. A122455 (second kind), A271702, A134094, A343841 (second kind inverse).

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(n, k, 1))); \\ Michel Marcus, May 10 2021

A134094 Binomial convolution of the Stirling numbers of the second kind.

Original entry on oeis.org

1, 2, 6, 26, 140, 887, 6405, 51564, 455712, 4370567, 45081476, 496556194, 5806502663, 71734434956, 932447207866, 12707973761320, 181033752071568, 2688530124711819, 41525910256013832, 665674913113633582
Offset: 0

Views

Author

Paul D. Hanna, Oct 08 2007

Keywords

Comments

Row n of triangle T=A134090 = row n of (I + D*C)^n for n>=0 where C denotes Pascal's triangle, I the identity matrix and D a matrix where D(n+1,n)=1 and zeros elsewhere.

Crossrefs

Cf. A134090; columns: A122455, A134091, A134092, A134093; A048993 (S2).
Cf. A000110.

Programs

  • Maple
    f:= proc(n) local k; add(binomial(n+1,k)*combinat:-stirling2(n,k),k=0..n) end proc:
    map(f, [$0..30]); # Robert Israel, Oct 16 2019
  • Mathematica
    Table[Sum[Binomial[n + 1, k] StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*polcoeff((1-k*x)/prod(i=0,k+1,1-i*x+x*O(x^(n))),n-k))}

Formula

a(n) = sum( C(n+1,k)*|S2(n,k)|, k=0..n).
Row sums of triangle A134090.
a(n) = [x^n] Sum_{k=0..n} C(n,k)*x^k*(1-k*x) / [Product_{i=0..k+1}(1-i*x)], equivalently, a(n) = Sum_{k=0..n} C(n,k)*[S2(n,k) - k*S2(n-1,k)], where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.
a(n) = Sum_{k=0..n} C(n+1,k)*S2(n,k). From Olivier Gérard, Oct 23 2012

Extensions

Definition modified and Mathematica program by Olivier Gérard, Oct 23 2012
Simplified Name and moved formulas into the formula section. - Paul D. Hanna, Oct 23 2013

A134090 Triangle, read by rows, where T(n,k) = [(I + D*C)^n](n,k); that is, row n of T = row n of (I + D*C)^n for n>=0 where C denotes Pascal's triangle, I the identity matrix and D a matrix where D(n+1,n)=1 and zeros elsewhere.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 13, 9, 3, 1, 71, 46, 18, 4, 1, 456, 285, 110, 30, 5, 1, 3337, 2021, 780, 215, 45, 6, 1, 27203, 16023, 6167, 1729, 371, 63, 7, 1, 243203, 139812, 53494, 15176, 3346, 588, 84, 8, 1, 2357356, 1326111, 504030, 143814, 32376, 5886, 876, 108, 9, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 07 2007

Keywords

Comments

Column 0 equals A122455 if we define A122455(0)=1.

Examples

			Triangle T begins:
1;
1, 1;
3, 2, 1;
13, 9, 3, 1;
71, 46, 18, 4, 1;
456, 285, 110, 30, 5, 1;
3337, 2021, 780, 215, 45, 6, 1;
27203, 16023, 6167, 1729, 371, 63, 7, 1;
243203, 139812, 53494, 15176, 3346, 588, 84, 8, 1;
2357356, 1326111, 504030, 143814, 32376, 5886, 876, 108, 9, 1; ...
Let P denote the matrix equal to Pascal's triangle shift down 1 row:
P(n,k) = C(n+1,k) for n>k>=0, with P(n,n)=1 for n>=0.
Illustrate row n of T = row n of P^n as follows.
Matrix P = I + D*C begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 4, 6, 4, 1, 1; ...
Matrix cube P^3 begins:
1;
3, 1;
6, 3, 1;
13, 9, 3, 1; <== row 3 of P^3 = row 3 of T
30, 25, 12, 3, 1;
73, 72, 40, 15, 3, 1; ...
Matrix 4th power P^4 begins:
1;
4, 1;
10, 4, 1;
26, 14, 4, 1;
71, 46, 18, 4, 1; <== row 4 of P^4 = row 4 of T
204, 155, 70, 22, 4, 1; ...
Matrix 5th power P^5 begins:
1;
5, 1;
15, 5, 1;
45, 20, 5, 1;
140, 75, 25, 5, 1;
456, 285, 110, 30, 5, 1; <== row 5 of P^5 = row 5 of T.
		

Crossrefs

Cf. columns: A134091, A134092, A134093; A134094 (row sums).

Programs

  • PARI
    \\ As generated by the g.f.
    {T(n,k)=polcoeff(sum(j=0,n,binomial(n,j)*x^j/(1-j*x)^k/prod(i=0,j,1-i*x+x*O(x^(n-k)))),n-k)}
    
  • PARI
    \\ As generated by matrix power: row n of T equals row n of P^n
    {T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r==c,1,if(r>c,binomial(r-2,c-1)))));(P^n)[n+1,k+1]}

Formula

T(n,k) = [x^(n-k)] Sum_{j=0..n} C(n,j)*x^j/(1-j*x)^k /[Product_{i=0..j}(1-i*x)].

A317274 a(n) = Sum_{k=0..n} binomial(n,k)*Stirling1(n,k).

Original entry on oeis.org

1, 1, -1, -2, 19, -79, 76, 2640, -36945, 329371, -1861949, -4438774, 355714228, -7292531180, 109844527612, -1277006731104, 8181112825231, 124379387459175, -6806984421310187, 191750786928500050, -4289244423048443149, 80163499107525756105, -1146313133241947091420, 5494990440819210736560
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 25 2018

Keywords

Comments

Binomial convolution of the signed Stirling numbers of the first kind.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] StirlingS1[n, k], {k, 0, n}], {n, 0, 23}]
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*stirling(n, k, 1)); \\ Michel Marcus, Aug 07 2019

A134091 Column 1 of triangle A134090.

Original entry on oeis.org

1, 2, 9, 46, 285, 2021, 16023, 139812, 1326111, 13544857, 147880458, 1715413558, 21036674321, 271585117428, 3677831536291, 52081368845176, 769123715337395, 11816582501728389, 188470925178659344, 3114771205613655362
Offset: 0

Views

Author

Paul D. Hanna, Oct 07 2007

Keywords

Comments

Row n of triangle T=A134090 = row n of (I + D*C)^n for n>=0 where C denotes Pascal's triangle, I the identity matrix and D a matrix where D(n+1,n)=1 and zeros elsewhere.

Crossrefs

Cf. A134090; columns: A122455, A134092, A134093; A134094 (row sums); A048993 (S2).

Programs

  • PARI
    a(n)=polcoeff(sum(k=0,n+1,binomial(n+1,k)*x^k/(1-k*x)/prod(i=0,k,1-i*x +x*O(x^n))),n)

Formula

a(n) = [x^n] Sum_{k=0..n+1} C(n+1,k)*x^k/(1-k*x) / [Product_{i=1..k}(1-i*x)].

A134092 Column 2 of triangle A134090.

Original entry on oeis.org

1, 3, 18, 110, 780, 6167, 53494, 504030, 5112090, 55411697, 638154165, 7770348170, 99618149267, 1339889000543, 18848892749144, 276573551651632, 4222814264496510, 66947348027905977, 1099955438013660173
Offset: 0

Views

Author

Paul D. Hanna, Oct 08 2007

Keywords

Comments

Row n of triangle T=A134090 = row n of (I + D*C)^n for n>=0 where C denotes Pascal's triangle, I the identity matrix and D a matrix where D(n+1,n)=1 and zeros elsewhere.

Crossrefs

Cf. A134090; columns: A122455, A134091, A134093; A134094 (row sums); A048993 (S2).

Programs

  • PARI
    {a(n)= polcoeff(sum(k=0,n+2,binomial(n+2,k)*x^k/(1-k*x)^2/prod(i=0,k,1-i*x +x*O(x^n))),n)}

Formula

a(n) = [x^n] Sum_{k=0..n+2} C(n+2,k)*x^k/(1-k*x)^2 / [Product_{i=1..k}(1-i*x)].

A134093 Column 3 of triangle A134090.

Original entry on oeis.org

1, 4, 30, 215, 1729, 15176, 143814, 1462995, 15876410, 182811992, 2223580281, 28458251185, 381943459065, 5359649816728, 78430018675440, 1194057733357517, 18873870914263424, 309154787519651284, 5238840625331179517
Offset: 0

Views

Author

Paul D. Hanna, Oct 08 2007

Keywords

Comments

Row n of triangle T=A134090 = row n of (I + D*C)^n for n>=0 where C denotes Pascal's triangle, I the identity matrix and D a matrix where D(n+1,n)=1 and zeros elsewhere.

Crossrefs

Cf. A134090; columns: A122455, A134091, A134092; A134094 (row sums); A048993 (S2).

Programs

  • PARI
    {a(n)= polcoeff(sum(k=0,n+3,binomial(n+3,k)*x^k/(1-k*x)^3/prod(i=0,k,1-i*x +x*O(x^n))),n)}

Formula

a(n) = [x^n] Sum_{k=0..n+3} C(n+3,k)*x^k/(1-k*x)^3 / [Product_{i=1..k}(1-i*x)].

A090683 Triangle read by rows, defined by T(n,k) = C(n,k)*S2(n,k), 0 <= k <= n, where C(n,k) are the binomial coefficients and S2(n,k) are the Stirling numbers of the second kind.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 9, 1, 0, 4, 42, 24, 1, 0, 5, 150, 250, 50, 1, 0, 6, 465, 1800, 975, 90, 1, 0, 7, 1323, 10535, 12250, 2940, 147, 1, 0, 8, 3556, 54096, 119070, 58800, 7448, 224, 1, 0, 9, 9180, 254100, 979020, 875826, 222264, 16632, 324, 1, 0, 10, 22995, 1119600, 7162050, 10716300, 4793670, 705600, 33750, 450, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 18 2003

Keywords

Comments

T(n,k) is the number of Green's H-classes contained in the D-class of rank k in the full transformation semigroup on [n]. - Geoffrey Critzer, Dec 27 2022

Examples

			Triangle begins:
  1;
  0,  1;
  0,  2,  1;
  0,  3,  9,  1;
  0,  4, 42, 24,  1;
  ...
		

References

  • O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, pages 58-62.

Crossrefs

Row sum sequence is A122455.

Programs

  • Mathematica
    Flatten[Table[Table[Binomial[n, k] StirlingS2[n, k], {k, 0, n}], {n, 0, 10}], 1]
  • Maxima
    create_list(binomial(n,k)*stirling2(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */

Formula

T(n, k) = binomial(n,k)*Stirling2(n,k).
T(n, k) = A007318(n, k)*A048993(n, k).
T(n, k) = A090657(n, k)/k!.

Extensions

Edited by Olivier Gérard, Oct 23 2012

A047799 a(n) = Sum_{k=0..n} C(n,k)*Stirling1(n,k)^2.

Original entry on oeis.org

1, 1, 3, 40, 1015, 40631, 2334766, 180836664, 18067408311, 2254675244287, 342877692847261, 62311687363814736, 13318714515734069806, 3304254169559017642774, 940912768920331123369272, 304601441677789509306775856
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Sum([0..n], k-> Binomial(n,k)*Stirling1(n,k)^2 )) # G. C. Greubel, Aug 07 2019
  • Magma
    [(&+[Binomial(n,k)*StirlingFirst(n,k)^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
    
  • Maple
    seq(add(binomial(n,k)*stirling1(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
  • Mathematica
    Table[Sum[Binomial[n, k]*StirlingS1[n, k]^2, {k, 0, n}], {n,0,20}] (* G. C. Greubel, Aug 07 2019 *)
  • PARI
    {a(n) = sum(k=0,n, binomial(n,k)*stirling(n,k,1)^2)};
    vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
    
  • Sage
    [sum(binomial(n,k)*stirling_number1(n,k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
    
Showing 1-10 of 14 results. Next