Original entry on oeis.org
1, 2, 9, 46, 285, 2021, 16023, 139812, 1326111, 13544857, 147880458, 1715413558, 21036674321, 271585117428, 3677831536291, 52081368845176, 769123715337395, 11816582501728389, 188470925178659344, 3114771205613655362
Offset: 0
-
a(n)=polcoeff(sum(k=0,n+1,binomial(n+1,k)*x^k/(1-k*x)/prod(i=0,k,1-i*x +x*O(x^n))),n)
Original entry on oeis.org
1, 3, 18, 110, 780, 6167, 53494, 504030, 5112090, 55411697, 638154165, 7770348170, 99618149267, 1339889000543, 18848892749144, 276573551651632, 4222814264496510, 66947348027905977, 1099955438013660173
Offset: 0
-
{a(n)= polcoeff(sum(k=0,n+2,binomial(n+2,k)*x^k/(1-k*x)^2/prod(i=0,k,1-i*x +x*O(x^n))),n)}
Original entry on oeis.org
1, 4, 30, 215, 1729, 15176, 143814, 1462995, 15876410, 182811992, 2223580281, 28458251185, 381943459065, 5359649816728, 78430018675440, 1194057733357517, 18873870914263424, 309154787519651284, 5238840625331179517
Offset: 0
-
{a(n)= polcoeff(sum(k=0,n+3,binomial(n+3,k)*x^k/(1-k*x)^3/prod(i=0,k,1-i*x +x*O(x^n))),n)}
A122455
a(n) = Sum_{k=0..n} C(n,k)*S2(n,k). Binomial convolution of the Stirling numbers of the 2nd kind. Also sum of the rows of A122454.
Original entry on oeis.org
1, 1, 3, 13, 71, 456, 3337, 27203, 243203, 2357356, 24554426, 272908736, 3218032897, 40065665043, 524575892037, 7197724224361, 103188239447115, 1541604242708064, 23945078236133674, 385890657416861532, 6440420888899573136, 111132957321230896024
Offset: 0
A098546(n) begins 1 2 1 3 3 1 4 6 6 4 1 ...
A036040(n) begins 1 1 1 1 3 1 1 4 3 6 1 ...
so
A122454(n) begins 1 2 1 3 9 1 4 24 18 24 1 ...
and
the present sequence begins 1 3 13 71 ...
with A000041 entries per row.
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, pages 58-62.
-
[(&+[Binomial(n,k)*StirlingSecond(n,k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Feb 07 2019
-
sortAbrSteg := proc(L1,L2) local i ; if nops(L1) < nops(L2) then RETURN(true) ; elif nops(L2) < nops(L1) then RETURN(false) ; else for i from 1 to nops(L1) do if op(i,L1) < op(i,L2) then RETURN(false) ; fi ; od ; RETURN(true) ; fi ; end: A098546 := proc(n,k) local prts,m ; prts := combinat[partition](n) ; prts := sort(prts, sortAbrSteg) ; if k <= nops(prts) then m := nops(op(k,prts)) ; binomial(n,m) ; else 0 ; fi ; end: M3 := proc(L) local n,k,an,resul; n := add(i,i=L) ; resul := factorial(n) ; for k from 1 to n do an := add(1-min(abs(j-k),1),j=L) ; resul := resul/ (factorial(k))^an /factorial(an) ; od ; end: A036040 := proc(n,k) local prts,m ; prts := combinat[partition](n) ; prts := sort(prts, sortAbrSteg) ; if k <= nops(prts) then M3(op(k,prts)) ; else 0 ; fi ; end: A122454 := proc(n,k) A098546(n,k)*A036040(n,k) ; end: A122455 := proc(n) add(A122454(n,k),k=1..combinat[numbpart](n)) ; end: seq(A122455(n),n=1..18) ; # R. J. Mathar, Jul 17 2007
# Alternatively:
A122455 := n -> add(binomial(n,k)*Stirling2(n,k),k=0..n):
seq(A122455(n),n=0..21); # Peter Luschny, Aug 11 2015
-
Table[Sum[Binomial[n, k]*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
-
a(n)= polcoeff(sum(k=0,n,binomial(n,k)*x^k/prod(i=0,k,1-i*x +x*O(x^n))),n) \\ Paul D. Hanna, Oct 07 2007
-
a(n)=sum(k=0,n, binomial(n,k) * stirling(n,k,2) ); /* Joerg Arndt, Jun 16 2012 */
-
[sum(binomial(n,k)*stirling_number2(n,k) for k in (0..n)) for n in range(20)] # G. C. Greubel, Feb 07 2019
A211210
a(n) = Sum_{k=0..n} binomial(n, k)*|S1(n, k)|.
Original entry on oeis.org
1, 1, 3, 16, 115, 1021, 10696, 128472, 1734447, 25937683, 424852351, 7554471156, 144767131444, 2971727661124, 65013102375404, 1509186299410896, 37032678328740751, 957376811266995031, 25999194631060525009, 739741591417352081464, 22000132609456951524051
Offset: 0
-
Table[Sum[Binomial[n, k] Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(n, k, 1))); \\ Michel Marcus, May 10 2021
A134094
Binomial convolution of the Stirling numbers of the second kind.
Original entry on oeis.org
1, 2, 6, 26, 140, 887, 6405, 51564, 455712, 4370567, 45081476, 496556194, 5806502663, 71734434956, 932447207866, 12707973761320, 181033752071568, 2688530124711819, 41525910256013832, 665674913113633582
Offset: 0
-
f:= proc(n) local k; add(binomial(n+1,k)*combinat:-stirling2(n,k),k=0..n) end proc:
map(f, [$0..30]); # Robert Israel, Oct 16 2019
-
Table[Sum[Binomial[n + 1, k] StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
-
{a(n)=sum(k=0,n,binomial(n,k)*polcoeff((1-k*x)/prod(i=0,k+1,1-i*x+x*O(x^(n))),n-k))}
Definition modified and Mathematica program by
Olivier Gérard, Oct 23 2012
Simplified Name and moved formulas into the formula section. -
Paul D. Hanna, Oct 23 2013
Showing 1-6 of 6 results.
Comments