A122461 Repetitions of even numbers four times.
0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 12, 12, 12, 12, 14, 14, 14, 14, 16, 16, 16, 16, 18, 18, 18, 18, 20, 20, 20, 20, 22, 22, 22, 22, 24, 24, 24, 24, 26, 26, 26, 26, 28, 28, 28, 28, 30, 30, 30, 30, 32, 32, 32, 32, 34, 34, 34, 34, 36, 36, 36, 36
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Maple
with(numtheory): for n from 1 to 70 do:it:=0:y:=[fsolve(sum('x^i ', 'i'=0..n-1), x, complex)] : for m from 1 to nops(y) do : if Re(y[m]) > 0 then it:=it+1:else fi:od: printf(`%d, `,it):od: # Michel Lagneau, Oct 31 2012 A122461:=n->2*floor(n/4); seq(A122461(n), n=0..100); # Wesley Ivan Hurt, Dec 06 2013
-
Mathematica
Table[2 Floor[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 06 2013 *) Table[PadRight[{},4,2n],{n,0,20}]//Flatten (* or *) LinearRecurrence[ {1,0,0,1,-1},{0,0,0,0,2},80] (* Harvey P. Dale, Mar 15 2020 *)
-
Python
def A122461(n): return n>>1&-2 # Chai Wah Wu, Jan 30 2023
Formula
a(n) = (Sum_{k=0..n} (k+1)*cos((n-k)*Pi/2))+1/4*(2*cos(n*Pi/2)+1+(-1)^n)-2. - Paolo P. Lava, May 15 2007
a(n) = 2*A002265(n) = 2*A180969(2,n). [Adriano Caroli, Nov 25 2010, corrected by R. J. Mathar, Nov 26 2010]
G.f.: 2*x^4/(1-x-x^4+x^5). [Bruno Berselli, Oct 31 2012]
a(n) = (-3+(-1)^n+2*i^((n-1)*n)+2*n)/4, where i=sqrt(-1). [Bruno Berselli, Oct 31 2012]
a(n) = 2 * floor(n/4). - Wesley Ivan Hurt, Dec 06 2013
a(n) = (2*n-3+2*cos(n*Pi/2)+cos(n*Pi)+2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 02 2017
Comments