cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122461 Repetitions of even numbers four times.

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 12, 12, 12, 12, 14, 14, 14, 14, 16, 16, 16, 16, 18, 18, 18, 18, 20, 20, 20, 20, 22, 22, 22, 22, 24, 24, 24, 24, 26, 26, 26, 26, 28, 28, 28, 28, 30, 30, 30, 30, 32, 32, 32, 32, 34, 34, 34, 34, 36, 36, 36, 36
Offset: 0

Views

Author

Keywords

Comments

Number of roots of P(x) = 1 + x + x^2 + … + x^n in the right half-plane. - Michel Lagneau, Oct 30 2012

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 70 do:it:=0:y:=[fsolve(sum('x^i ', 'i'=0..n-1), x, complex)] : for m from 1 to nops(y) do : if Re(y[m]) > 0 then it:=it+1:else fi:od: printf(`%d, `,it):od: # Michel Lagneau, Oct 31 2012
    A122461:=n->2*floor(n/4); seq(A122461(n), n=0..100); # Wesley Ivan Hurt, Dec 06 2013
  • Mathematica
    Table[2 Floor[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 06 2013 *)
    Table[PadRight[{},4,2n],{n,0,20}]//Flatten (* or *) LinearRecurrence[ {1,0,0,1,-1},{0,0,0,0,2},80] (* Harvey P. Dale, Mar 15 2020 *)
  • Python
    def A122461(n): return n>>1&-2 # Chai Wah Wu, Jan 30 2023

Formula

a(n) = (Sum_{k=0..n} (k+1)*cos((n-k)*Pi/2))+1/4*(2*cos(n*Pi/2)+1+(-1)^n)-2. - Paolo P. Lava, May 15 2007
a(n) = 2*A002265(n) = 2*A180969(2,n). [Adriano Caroli, Nov 25 2010, corrected by R. J. Mathar, Nov 26 2010]
G.f.: 2*x^4/(1-x-x^4+x^5). [Bruno Berselli, Oct 31 2012]
a(n) = (-3+(-1)^n+2*i^((n-1)*n)+2*n)/4, where i=sqrt(-1). [Bruno Berselli, Oct 31 2012]
a(n) = 2 * floor(n/4). - Wesley Ivan Hurt, Dec 06 2013
a(n) = (2*n-3+2*cos(n*Pi/2)+cos(n*Pi)+2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 02 2017