A122558 a(0)=1, a(1)=3, a(n) = 4*a(n-1) + 3*a(n-2) for n > 1.
1, 3, 15, 69, 321, 1491, 6927, 32181, 149505, 694563, 3226767, 14990757, 69643329, 323545587, 1503112335, 6983086101, 32441681409, 150715983939, 700188979983, 3252903871749, 15112182426945, 70207441323027, 326166312572943
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,3).
Crossrefs
Cf. A122542.
Programs
-
Magma
[n le 2 select 3^(n-1) else 4*Self(n-1) +3*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 27 2024
-
Mathematica
LinearRecurrence[{4,3},{1,3},30] (* Harvey P. Dale, Mar 18 2023 *)
-
PARI
Vec((1-x)/(1-4*x-3*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2022
-
SageMath
A122558= BinaryRecurrenceSequence(4,3,1,3) [A122558(n) for n in range(41)] # G. C. Greubel, Oct 27 2024
Formula
G.f.: (1-x)/(1-4*x-3*x^2).
a(n) = Sum_{k=0..n} 3^k*A122542(n,k).
Limit_{n->infinity} a(n+1)/a(n) = 2 + sqrt(7) = 4.645751311064....
a(n) = ((7+sqrt(7))/14)*(2+sqrt(7))^n + ((7-sqrt(7))/14)*(2-sqrt(7))^n. - Richard Choulet, Nov 20 2008
Extensions
Corrected by T. D. Noe, Nov 07 2006
Comments