A129890
a(n) = (2*n+2)!! - (2*n+1)!!.
Original entry on oeis.org
1, 5, 33, 279, 2895, 35685, 509985, 8294895, 151335135, 3061162125, 68000295825, 1645756410375, 43105900812975, 1214871076343925, 36659590336994625, 1179297174137457375, 40288002704636061375, 1456700757237661060125
Offset: 0
2!! - 1!! = 2 - 1 = 1;
4!! - 3!! = 8 - 3 = 5;
6!! - 5!! = 48 - 15 = 33.
- Selden Crary, Richard Diehl Martinez, and Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017, Table 2.
- Alexander Kreinin, Integer Sequences and Laplace Continued Fraction, Preprint 2016.
- Alexander Kreinin, Integer Sequences Connected to the Laplace Continued Fraction and Ramanujan's Identity, Journal of Integer Sequences, 19 (2016), #16.6.2.
- N. Ochiumi, On the total sum of number of nodes covering a given number of leaves in an unordered binary tree
- Donovan Young, A critical quartet for queuing couples, arXiv:2007.13868 [math.CO], 2020.
-
seq(doublefactorial(2*n+2)-doublefactorial(2*n+1),n=0..9); # Peter Luschny, Dec 01 2014
-
a[n_] := (2n+2)!! - (2n+1)!!;
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 30 2018 *)
A232618
a(n) = (2n)!! mod (2n-1)!! where k!! = A006882(k).
Original entry on oeis.org
0, 2, 3, 69, 60, 4500, 104580, 186795, 13497435, 442245825, 13003053525, 64585694250, 3576632909850, 147580842959550, 5708173568847750, 27904470362393625, 2292043480058957625, 126842184377462428875, 6371504674680470700375, 312265748715684068930625
Offset: 1
a(3) = A006882(6) mod A006882(5) = 2*4*6 mod 1*3*5 = 48 mod 15 = 3.
-
Table[Mod[(2n)!!,(2n-1)!!],{n,20}] (* Harvey P. Dale, Sep 23 2020 *)
-
o=e=1
for n in range(1,99,2):
o*=n
e*=n+1
print(str(e%o), end=',')
A232617
Product of first n odd numbers plus product of first n even numbers: (2n-1)!! + (2n)!!, where k!! = A006882(k).
Original entry on oeis.org
3, 11, 63, 489, 4785, 56475, 780255, 12348945, 220253985, 4370620275, 95498916975, 2278224696825, 58917607974225, 1641787169697675, 49040157044253375, 1563094742062478625, 52953322446161762625, 1899986948191060603875, 71977860935783603175375, 2870913642898706235455625
Offset: 1
a(3) = 1*3*5 + 2*4*6 = 15 + 48 = 63.
-
Table[n!!+(n+1)!!,{n,1,41,2}] (* Harvey P. Dale, Jan 22 2019 *)
-
a(n)=prod(i=1,n,2*i-1)+prod(i=1,n,2*i) \\ Ralf Stephan, Nov 28 2013
-
o=e=1
for n in range(1,99,2):
o*=n
e*=n+1
print(str(e+o), end=',')
A306184
a(n) = (2n+1)!! mod (2n)!! where k!! = A006882(k).
Original entry on oeis.org
1, 7, 9, 177, 2715, 42975, 91665, 3493665, 97345395, 2601636975, 70985324025, 57891366225, 9411029102475, 476966861546175, 20499289200014625, 847876038362978625, 35160445175104123875, 1487419121780448231375, 945654757149212735625, 357657177058846280240625
Offset: 1
a(3) = A006882(7) mod A006882(6) = (7*5*3) mod (6*4*2) = 105 mod 48 = 9.
-
f:= n -> doublefactorial(2*n+1) mod doublefactorial(2*n):
map(f, [$1..40]); # Robert Israel, Jan 28 2019
-
Mod[#[[2]],#[[1]]]&/@Partition[Range[2,42]!!,2] (* Harvey P. Dale, May 29 2025 *)
-
o=e=1
for n in range(2, 99, 2):
o*=n+1
e*=n
print(o%e, end=', ')
A306185
a(n) = (2n+1)!! + (2n)!! where k!! = A006882(k).
Original entry on oeis.org
5, 23, 153, 1329, 14235, 181215, 2672145, 44781345, 840523635, 17465201775, 397983749625, 9867844134225, 264469801070475, 7618612476650175, 234748657653134625, 7703855828862818625, 268263758052098683875, 9879138385352252391375, 383608053176023482431625, 15664153113813817068080625
Offset: 1
a(3) = A006882(7) + A006882(6) = (7*5*3) + (6*4*2) = 105 + 48 = 153.
-
o=e=1
for n in range(2, 99, 2):
o*=n+1
e*=n
print(o+e, end=', ')
Showing 1-5 of 5 results.
Comments