cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A129890 a(n) = (2*n+2)!! - (2*n+1)!!.

Original entry on oeis.org

1, 5, 33, 279, 2895, 35685, 509985, 8294895, 151335135, 3061162125, 68000295825, 1645756410375, 43105900812975, 1214871076343925, 36659590336994625, 1179297174137457375, 40288002704636061375, 1456700757237661060125
Offset: 0

Views

Author

Keywords

Comments

Previous name was: Difference between the double factorial of the n-th nonnegative even number and the double factorial of the n-th nonnegative odd number.
In other words, a(n) = b(2n+2)-b(2n+1), where b = A006882. - N. J. A. Sloane, Dec 14 2011 [Corrected Peter Luschny, Dec 01 2014]
a(n) is the number of linear chord diagrams on 2n+2 vertices with one marked chord such that none of the remaining n chords are contained within the marked chord, see [Young]. - Donovan Young, Aug 11 2020

Examples

			2!! - 1!! =  2 -  1 =  1;
4!! - 3!! =  8 -  3 =  5;
6!! - 5!! = 48 - 15 = 33.
		

Crossrefs

Programs

  • Maple
    seq(doublefactorial(2*n+2)-doublefactorial(2*n+1),n=0..9); # Peter Luschny, Dec 01 2014
  • Mathematica
    a[n_] := (2n+2)!! - (2n+1)!!;
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 30 2018 *)

Formula

E.g.f.: 2/((1-2*x)^2)-1/[(1-2*x)*sqrt(1-2*x)]. - Sergei N. Gladkovskii, Dec 04 2011
a(n) = (2*n+1)*a(n-1) + A000165(n). - Philippe Deléham, Oct 28 2013
Conjecture: a(n) = (2*n + 2)*(2*n + 2)! * Sum_{k >= 1} (-1)^(k+1)/Product_{j = 0..n+1} (k + 2*j). - Peter Bala, Jul 06 2025

Extensions

New name from Peter Luschny, Dec 01 2014

A232618 a(n) = (2n)!! mod (2n-1)!! where k!! = A006882(k).

Original entry on oeis.org

0, 2, 3, 69, 60, 4500, 104580, 186795, 13497435, 442245825, 13003053525, 64585694250, 3576632909850, 147580842959550, 5708173568847750, 27904470362393625, 2292043480058957625, 126842184377462428875, 6371504674680470700375, 312265748715684068930625
Offset: 1

Views

Author

Alex Ratushnyak, Nov 27 2013

Keywords

Comments

(2n)!! is the product of first n even numbers, (2n-1)!! is the product of first n odd numbers.

Examples

			a(3) = A006882(6) mod A006882(5) = 2*4*6 mod 1*3*5 = 48 mod 15 = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[(2n)!!,(2n-1)!!],{n,20}] (* Harvey P. Dale, Sep 23 2020 *)
  • Python
    o=e=1
    for n in range(1,99,2):
      o*=n
      e*=n+1
      print(str(e%o), end=',')

Formula

a(n) = A006882(2*n) mod A006882(2*n-1).

A232617 Product of first n odd numbers plus product of first n even numbers: (2n-1)!! + (2n)!!, where k!! = A006882(k).

Original entry on oeis.org

3, 11, 63, 489, 4785, 56475, 780255, 12348945, 220253985, 4370620275, 95498916975, 2278224696825, 58917607974225, 1641787169697675, 49040157044253375, 1563094742062478625, 52953322446161762625, 1899986948191060603875, 71977860935783603175375, 2870913642898706235455625
Offset: 1

Views

Author

Alex Ratushnyak, Nov 27 2013

Keywords

Examples

			a(3) = 1*3*5 + 2*4*6 = 15 + 48 = 63.
		

Crossrefs

Programs

  • Mathematica
    Table[n!!+(n+1)!!,{n,1,41,2}] (* Harvey P. Dale, Jan 22 2019 *)
  • PARI
    a(n)=prod(i=1,n,2*i-1)+prod(i=1,n,2*i) \\ Ralf Stephan, Nov 28 2013
  • Python
    o=e=1
    for n in range(1,99,2):
      o*=n
      e*=n+1
      print(str(e+o), end=',')
    

Formula

a(n) = A006882(2*n-1) + A006882(2*n).
a(n) = A001147(n) + A000165(n).
a(n) +(-4*n+3)*a(n-1) +2*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 23 2014

A306184 a(n) = (2n+1)!! mod (2n)!! where k!! = A006882(k).

Original entry on oeis.org

1, 7, 9, 177, 2715, 42975, 91665, 3493665, 97345395, 2601636975, 70985324025, 57891366225, 9411029102475, 476966861546175, 20499289200014625, 847876038362978625, 35160445175104123875, 1487419121780448231375, 945654757149212735625, 357657177058846280240625
Offset: 1

Views

Author

Alex Ratushnyak, Jan 27 2019

Keywords

Comments

a(n) is divisible by A049606(n). - Robert Israel, Jan 28 2019

Examples

			a(3) = A006882(7) mod A006882(6) = (7*5*3) mod (6*4*2) = 105 mod 48 = 9.
		

Crossrefs

Programs

  • Maple
    f:= n -> doublefactorial(2*n+1) mod doublefactorial(2*n):
    map(f, [$1..40]); # Robert Israel, Jan 28 2019
  • Mathematica
    Mod[#[[2]],#[[1]]]&/@Partition[Range[2,42]!!,2] (* Harvey P. Dale, May 29 2025 *)
  • Python
    o=e=1
    for n in range(2, 99, 2):
      o*=n+1
      e*=n
      print(o%e, end=', ')

Formula

a(n) = A006882(2*n+1) mod A006882(2*n).

A306185 a(n) = (2n+1)!! + (2n)!! where k!! = A006882(k).

Original entry on oeis.org

5, 23, 153, 1329, 14235, 181215, 2672145, 44781345, 840523635, 17465201775, 397983749625, 9867844134225, 264469801070475, 7618612476650175, 234748657653134625, 7703855828862818625, 268263758052098683875, 9879138385352252391375, 383608053176023482431625, 15664153113813817068080625
Offset: 1

Views

Author

Alex Ratushnyak, Jan 27 2019

Keywords

Examples

			a(3) = A006882(7) + A006882(6) = (7*5*3) + (6*4*2) = 105 + 48 = 153.
		

Crossrefs

Programs

  • Python
    o=e=1
    for n in range(2, 99, 2):
      o*=n+1
      e*=n
      print(o+e, end=', ')

Formula

a(n) = A006882(2*n+1) + A006882(2*n).
Showing 1-5 of 5 results.