cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A137493 Numbers with 30 divisors.

Original entry on oeis.org

720, 1008, 1200, 1584, 1620, 1872, 2268, 2352, 2448, 2592, 2736, 2800, 3312, 3564, 3888, 3920, 4050, 4176, 4212, 4400, 4464, 4608, 5200, 5328, 5508, 5808, 5904, 6156, 6192, 6768, 6800, 7452, 7500, 7600, 7632, 7938, 8112, 8496, 8624, 8784, 9200, 9396
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^29 (subset of A122970), p*q^2*r^4 (A179669), p^4*q^5 (A179702), p^2*q^9 (like 4608) or p*q^14, where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Cf. A137492 (29 divs), A139571 (31 divs).

Programs

  • Mathematica
    Select[Range[10000],DivisorSigma[0,#]==30&]  (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    is(n)=numdiv(n)==30 \\ Charles R Greathouse IV, Jun 19 2016
    
  • PARI
    list(lim)=
    {
      my(f=(v,s)->concat(v,listsig(lim,s,1)));
      Set(fold(f, [[], [29], [5, 4], [9, 2], [14, 1], [4, 2, 1]]));
    }
    listsig(lim, sig, coprime)=
    {
      my(e=sig[1]);
      if(#sig<2,
        if(#sig==0 || sig[1]==0, return(if(lim<1,[],[1])));
        my(P=primes([2,sqrtnint(lim\1,e)]));
        if(coprime==1, return(if(e>1,apply(p->p^e,P),P)));
        P=select(p->gcd(p,coprime)==1, P);
        if(e>1, P=apply(p->p^e, P));
        return(P);
      );
      my(v=List(),ss=sig[2..#sig],t=leastOfSig(ss));
      forprime(p=2,sqrtnint(lim\t,e),
        if(coprime%p,
            my(u=listsig(lim\p^e,ss,coprime*p));
            for(i=1,#u, listput(v,p^e*u[i]));
        )
      );
      Vec(v);
    } \\ Charles R Greathouse IV, Nov 18 2021

Formula

A000005(a(n))=30.

A122971 30th powers: a(n) = n^30.

Original entry on oeis.org

0, 1, 1073741824, 205891132094649, 1152921504606846976, 931322574615478515625, 221073919720733357899776, 22539340290692258087863249, 1237940039285380274899124224
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (squares), A000578 (cubes), A000584 (5th powers).

Programs

  • Mathematica
    Range[0,10]^30 (* Harvey P. Dale, Mar 06 2019 *)
  • PARI
    (A122971(n)=n^30); is_A122971(N)=ispower(N,30) \\ M. F. Hasler, Jul 24 2022
    
  • Python
    def A122971(n): return n**30
    from sympy import nextprime
    def is_A122971(N, k=30): # 2nd opt. arg to check for powers other than 30
        p = 2
        while N >= p**k:
            for e in range(N):
                if N % p: break
                N //= p
            if e % k: return False
            p = nextprime(p)
        return N < 2  #  M. F. Hasler, Jul 24 2022

Formula

Totally multiplicative sequence with a(p) = p^30 for prime p. Multiplicative sequence with a(p^e) = p^(30e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-30).
Sum_{n>=1} 1/a(n) = zeta(30) = 6892673020804*Pi^30/5660878804669082674070015625.
Sum_{n>=1} (-1)^(n+1)/a(n) = 536870911*zeta(30)/536870912 = 925118910976041358111*Pi^30/759790291646040068357842010112000000. (End)
Intersection of A000290 and A000578 and A000584. - M. F. Hasler, Jul 24 2022
Showing 1-2 of 2 results.