A123029 a(2*n-1) = Product_{i=1..n} Fibonacci(2*i-1) and a(2*n) = Product_{i=1..n} Fibonacci(2*i).
1, 1, 2, 3, 10, 24, 130, 504, 4420, 27720, 393380, 3991680, 91657540, 1504863360, 55911099400, 1485300136320, 89290025741800, 3838015552250880, 373321597626465800, 25964175210977203200, 4086378207619294646800
Offset: 1
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 10*x^5 + 24*x^6 + 130*x^7 + 504*x^8 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- P. C. Parks, A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov, Math. Proc. of the Cambridge Philosophical Society, Vol. 58, Issue 04 (1962) p. 694-702.
- Eric Weisstein's World of Mathematics, Fibonorial.
Programs
-
Magma
function a(n) if n lt 2 then return 1; else return Fibonacci(n)*a(n-2); end if; return a; end function; [a(n): n in [1..30]]; // G. C. Greubel, Jul 20 2021
-
Maple
with(combinat): A123029 :=proc(n): if type(n,even) then mul(fibonacci(2*i), i=1..n/2) else mul(fibonacci(2*i-1), i= 1..(n+1)/2) fi: end: seq(A123029(n), n=1..21); # Johannes W. Meijer, Aug 21 2011
-
Mathematica
a[n_]:= a[n]= If[n<2, 1, Fibonacci[n]*a[n-2]]; Table[a[n], {n, 30}] (* modified by G. C. Greubel, Jul 20 2021 *) With[{nn=21},Riffle[FoldList[Times,1,Fibonacci[Range[3,nn,2]]],FoldList[ Times,1, Fibonacci[ Range[4,nn+1,2]]]]] (* Harvey P. Dale, Mar 14 2012 *)
-
PARI
{a(n) = if( n<0, 0, prod(k=0, (n-1)\2, fibonacci(n - 2*k)))}; /* Michael Somos, Oct 07 2014 */
-
Sage
def a(n): return 1 if (n<2) else fibonacci(n)*a(n-2) [a(n) for n in (1..30)] # G. C. Greubel, Jul 20 2021
Formula
a(n) = n!*c(n) with c(n) = b(n)*c(n-2)/(n*(n-1)), c(0) = 1, c(1) = 1; b(n) = b(n-1) + b(n-2), b(0) = 0, b(1) = 1 and b(n) = F(n) with F(n) = A000045(n).
From Johannes W. Meijer, Aug 21 2011: (Start)
a(n) = F(n)*a(n-2).
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 07 2014
0 = a(n)*(a(n+2)*a(n+3) - a(n+1)*a(n+4)) + a(n+1)*(+a(n+2)^2) for all n>=0. - Michael Somos, Oct 07 2014
Extensions
Edited by Johannes W. Meijer, Aug 21 2011
Comments