cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226095 Primes formed by concatenation (exponent then prime) of prime factorizations of the positive integers.

Original entry on oeis.org

13, 1213, 17, 23, 2213, 113, 1217, 1223, 12113, 131, 137, 12119, 22111, 3217, 167, 173, 179, 43, 221317, 12143, 22123, 197, 1103, 1109, 4217, 22129, 17117, 211, 12161, 32117, 13147, 1327, 1151, 32119, 23117, 15131, 17123, 1163, 1213129, 13159, 1181, 1217113
Offset: 1

Views

Author

Bill McEachen, May 26 2013

Keywords

Comments

This produces primes well above the base composite, like 22111 from 44.
Entries stemming strictly from composite prime factorizations will be unique and the sequence will very likely be infinite. Of course not every prime will be encountered, and duplication will be seen across composite and prime factorization treated jointly (an example being 18 and 223 both yielding the prime 1223).
Primes in A123132. - Charles R Greathouse IV, May 28 2013

Examples

			44 = 2^2 * 11^1 yields 22111, which is prime and so enters the sequence.  Powers precede the prime factor.
		

Crossrefs

Cf. A105435 (primes which with a 1 prepended stay prime).

Programs

  • Maple
    select(isprime, [seq((l-> parse(cat(seq([i[2], i[1]][], i=l))))(sort(ifactors(n)[2], (x, y)-> x[1]Alois P. Heinz, Nov 24 2017
  • Mathematica
    t = {}; Do[s = FromDigits[Flatten[IntegerDigits /@ RotateLeft /@ FactorInteger[n]]]; If[PrimeQ[s], AppendTo[t, s]], {n, 2, 200}]; t (* T. D. Noe, May 28 2013 *)
    Select[FromDigits[Flatten[IntegerDigits/@Reverse/@FactorInteger[#]]]&/@ Range[2, 300],PrimeQ] (* Harvey P. Dale, Nov 24 2017 *)
  • PARI
    list(maxx)={
    n=3;cnt=0;
    while(n<=maxx,
    f=factorint(n); old=0;
    \\ as we concatenate, code is f{digits of each p.f.&pwr}
    for (i=1,#f[,1],
    new=(10^length(  Str(f[i,1]) )  *f[i,2] + f[i,1]);
    q=new+(10^length(Str(new))   )*old;  old=q  );
    if(isprime(q),  print("entry from", n, "   ",  q);
    cnt++);  n++;
    while(isprime(n),n++);
    ); }

A253295 Prime factor look-and-say sequence starting with a(0) = 8.

Original entry on oeis.org

8, 32, 52, 22113, 5317113, 131167110613, 1711111711229181533, 1761140131560305063481, 1313718313871371493773936301, 125111501315199577167049112574051, 33185242436199338915435977096119517, 149731486009055371137303679066123116017
Offset: 0

Views

Author

Robert Israel, Dec 29 2014

Keywords

Comments

If prime factorization of a(n) is p_1^d_1 p_2^d_2 ... p_k^d_k with p_1 < ... < p_k, then a(n+1) is the concatenation of d_1, p_1, d_2, p_2, ..., d_k, p_k.
I suspect that eventually a prime a(n) may be reached, but haven't found one yet.

Examples

			a(0) = 2^3 so a(1) = 32.
a(1) = 2^5 so a(2) = 52.
a(2) = 2^2 * 13^1 so a(3) = 22113.
a(3) = 3^5 * 7^1 * 13^1 so a(4) = 5317113.
		

Crossrefs

Programs

  • Maple
    ncat:= (x,y) -> 10^(1+ilog10(y))*x + y:
    f:= proc(x) local L,y,t;
      L:= sort(ifactors(x)[2],(a,b)->a[1]
    				
  • Mathematica
    a253295[n_] := Block[{a, t = Table[8, {n}]},
      a[x_] := FromDigits[Flatten[IntegerDigits[Reverse /@
      FactorInteger[x]]]]; Do[t[[i]] = a[t[[i - 1]]], {i, 2, n}]; t];
    a253295[13] (* Michael De Vlieger, Dec 29 2014 *)
  • Python
    from sympy import factorint
    A253295_list = [8]
    for _ in range(10):
        A253295_list.append(int(''.join((str(e)+str(p) for p, e in sorted(factorint(A253295_list[-1]).items())))))
    # Chai Wah Wu, Dec 30 2014

Formula

a(n+1) = A123132(a(n)).
Showing 1-2 of 2 results.