cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123162 Triangle read by rows: T(n,k) = binomial(2*n - 1, 2*k - 1) for 0 < k <= n and T(n,0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 7, 35, 21, 1, 1, 9, 84, 126, 36, 1, 1, 11, 165, 462, 330, 55, 1, 1, 13, 286, 1287, 1716, 715, 78, 1, 1, 15, 455, 3003, 6435, 5005, 1365, 105, 1, 1, 17, 680, 6188, 19448, 24310, 12376, 2380, 136, 1, 1, 19, 969, 11628, 50388, 92378, 75582, 27132, 3876, 171, 1
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2006

Keywords

Examples

			Triangle begins:
     1;
     1,  1;
     1,  3,   1;
     1,  5,  10,    1;
     1,  7,  35,   21,    1;
     1,  9,  84,  126,   36,    1;
     1, 11, 165,  462,  330,   55,    1;
     1, 13, 286, 1287, 1716,  715,   78,  1;
     1, 15, 455, 3003, 6435, 5005, 1365, 105, 1;
     ...
		

Crossrefs

Programs

  • GAP
    Flat(Concatenation([1],List([1..10],n->Concatenation([1],List([1..n],m->Binomial(2*n-1,2*m-1)))))); # Muniru A Asiru, Oct 11 2018
    
  • Magma
    A123162:= func< n,k | k eq 0 select 1 else Binomial(2*n-1, 2*k-1) >;
    [A123162(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2023
  • Mathematica
    T[n_, k_]= If [k==0, 1, Binomial[2*n-1, 2*k-1]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
  • Maxima
    T(n, k) := if k = 0 then 1 else binomial(2*n - 1, 2*k - 1)$
    tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
    
  • SageMath
    def A123162(n,k): return binomial(2*n-1, 2*k-1) + int(k==0)
    flatten([[A123162(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2022
    

Formula

From Paul Barry, May 26 2008: (Start)
T(n,k) = binomial(2*n - 1, 2*k - 1) + 0^k.
Column k has g.f. (x^k/(1 - x)^(2*k + 0^k))*Sum_{j=0..k} binomial(2*k, 2*j)*x^j. (End)
From Franck Maminirina Ramaharo, Oct 10 2018: (Start)
Row n = coefficients in the expansion of ((x + sqrt(x))*(sqrt(x) - 1)^(2*n) + (x - sqrt(x))*(sqrt(x) + 1)^(2*n) + 2*x - 2)/(2*x - 2).
G.f.: (1 - (2 + x)*y + (1 - 2*x)*y^2 - (x - x^2)*y^3)/(1 - (3 + 2*x)*y + (3 + x^2)*y^2 - (1 - 2*x + x^2)*y^3).
E.g.f.: ((x + sqrt(x))*exp(y*(sqrt(x) - 1)^2) + (x - sqrt(x))*exp(y*(sqrt(x) + 1)^2) + (2*x - 2)*exp(y) - 2*x)/(2*x - 2). (End)
From G. C. Greubel, Jul 18 2023: (Start)
Sum_{k=0..n} T(n,k) = A123166(n).
T(n, n-1) = (n-1)*T(n, 1), n >= 2.
T(2*n, n) = A259557(n).
T(2*n+1, n+1) = A002458(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 04 2006
Partially edited and offset corrected by Franck Maminirina Ramaharo, Oct 10 2018