cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A176743 a(n) = gcd(A000217(n+1), A002378(n+2)).

Original entry on oeis.org

1, 3, 2, 10, 3, 7, 4, 18, 5, 11, 6, 26, 7, 15, 8, 34, 9, 19, 10, 42, 11, 23, 12, 50, 13, 27, 14, 58, 15, 31, 16, 66, 17, 35, 18, 74, 19, 39, 20, 82, 21, 43, 22, 90, 23, 47, 24, 98, 25, 51, 26
Offset: 0

Views

Author

Paul Curtz, Apr 25 2010

Keywords

Comments

These greatest common divisors of (n+1)*(n+2)/2 and (n+2)*(n+3) appear in the second row of the table discussed in A177427: 0, -1/6, -1/4, -3/10, -1/3, -5/14, -3/8, -7/18, -2/5, ... These fractions can be written as A000217(n+1)/A002378(n+2), n >= 0, and the current sequence shows the common factors that reduces the fractions to the standard format with coprime numerator and denominator.

Crossrefs

Cf. A000217 (triangular), A002378 (oblong), A176662.

Programs

Formula

a(2n) = n+1, a(2n+1) = A123167(n+2).
a(n) = 2*a(n-4) - a(n-8).
G.f.: (1 + 3*x + 2*x^2 + 10*x^3 + x^4 + x^5 - 2*x^7) / ( (x-1)^2*(1+x)^2*(x^2+1)^2 ). - R. J. Mathar, Jan 16 2011
a(n) = (8*n + 16 - 4*(n+2)*(-1)^n + (2*n + 5 + (-1)^n)*((1-(-1)^n)*(-1)^((2*n + 3 + (-1)^n)/4)))/8. - Luce ETIENNE, Feb 03 2015

A176662 a(0)=2, a(1)=7, and a(n) = (3*n+1)*2^(n-1) if n > 1.

Original entry on oeis.org

2, 7, 14, 40, 104, 256, 608, 1408, 3200, 7168, 15872, 34816, 75776, 163840, 352256, 753664, 1605632, 3407872, 7208960, 15204352, 31981568, 67108864, 140509184, 293601280, 612368384, 1275068416, 2650800128, 5502926848, 11408506880, 23622320128, 48855252992
Offset: 0

Views

Author

Paul Curtz, Apr 23 2010

Keywords

Comments

The sequence appears on the main diagonal of the array defined by A123167 in the first row and successive differences in followup rows:
2, 3, 10, 7, 18, 11, 26, 15, 34, 19, ... A123167
1, 7, -3, 11, -7, 15, -11, 19, -15, 23, ... first diff
6, -10, 14, -18, 22 -26, 30, -34, 38, ... second diff
-16, 24, -32, 40, -48, 56, -64, 72, -80, ... third diff

Programs

  • Mathematica
    LinearRecurrence[{4,-4},{2,7,14,40},40] (* or *) Join[{2,7},Table[ (3n+1) 2^(n-1),{n,2,40}]] (* Harvey P. Dale, Oct 05 2019 *)

Formula

a(n) mod 9 = A010710(n-1), n > 2.
a(2n) + a(2n+1) = 9, 54, 360, 2016, ...
a(n) - 2*a(n-1) = 12*A131577(n-2), n > 1.
a(n) = 4*a(n-1) - 4*a(n-2), n > 3.
G.f.: (-6*x^2+12*x^3+2-x)/(1-2*x)^2.

Extensions

Edited by R. J. Mathar, Jun 30 2010

A185138 a(4*n) = n*(4*n-1); a(2*n+1) = n*(n+1)/2; a(4*n+2) = (2*n+1)*(4*n+1).

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 15, 6, 14, 10, 45, 15, 33, 21, 91, 28, 60, 36, 153, 45, 95, 55, 231, 66, 138, 78, 325, 91, 189, 105, 435, 120, 248, 136, 561, 153, 315, 171, 703, 190, 390, 210, 861, 231, 473, 253, 1035, 276, 564, 300, 1225, 325
Offset: 0

Views

Author

Paul Curtz, Mar 12 2012

Keywords

Comments

a(n) is divisible by the n-th term of the sequence 3, 3, 1, 1, 3, 3 (periodically repeated with period 6).
a(n) is divisible by b(floor((n-1)/3)), where b(n) = 1, 3, 2, 3, 7, 3, 5, 3, 13, 3, 8, 3, 19, 3,... , n>=0, is defined by inserting a 3 after each entry of A165355.
(n+1)*(n+2)*(n+3)/2=3*A000292(n+1) is divisible by a(n+2), so there is an integer sequence c(n)= 3*A000292(n+1)/a(n+2) = 3, 12, 10, 20, 7, 28, 18,... with c(2*n)=A123167(n+1) and c(n)/A109613(n+2)=A176895(n).
The sequence of denominators of a(n+2)/n has period length 8: 1, 2, 1, 4, 1, 1, 1, 4.
A table T(k,c) = a(1+c*(1+2k)) of (2*k+1)-sections starts as follows:
0 1 1 3 3 15...
0 3 6 45 21 60...
0 15 15 60 55 325...
0 14 28 231 105 315...
0 45 45 189 171 1035...
The table of T'(k,c) = T(k,c)/(2k+1), columns c>=0, looks as follows, construction similar to A165943:
0 1 1 3 3 15 6 14 k=0
0 1 2 15 7 20 15 77 k=1
0 3 3 12 11 65 24 63 k=2
0 2 4 33 15 45 33 175 k=3
0 5 5 21 19 115 42 112 k=4
0 3 6 51 23 70 51 273 k=5
The entries T'(k,c) are divisible by A060819(c).
Differences are T'(2,c)-T'(0,c) = T'(4,c)-T'(2,c) = 0, 2, 2, 9, 8, 50, 18, 49, 32, ... which is A168077(c) multiplied by the c-th term of the period-4 sequence 2, 2, 2, 1.
Differences are T'(3,c)- T'(1,c) = T'(5,c)-T'(3,c) = 0, 1, 2, 18, 8, 25, 18, 98, 32,... which is A168077(c) multiplied by the period-4 sequence 2, 1, 2, 2.
The reduced fractions T'(0,c)/T'(1,c) = 1, 1/2, 1/5, 3/7, 3/4, 2/5, 2/11, 5/13, 5/7, 3/8, 3/17, 7/19, .., c>=1, have a numerator sequence A026741(floor(c/2)+1). The denominator sequence is f(c) = 1, 2, 5, 7, 4, 5,.. = A001651(c+1)/A130658(c+1), with f(2*c+1) +f(2*c+2) = 3, 12, 9, 24 .. =3*A022998(c).

Crossrefs

Programs

  • Maple
    A185138 := proc(n)
            if n mod 4 = 0 then
                    return n/4*(n-1) ;
            elif n mod 2 = 1 then
                    return (n-1)*(n+1)/8 ;
            else
                    return (n-1)*n/2 ;
            end if;
    end proc: # R. J. Mathar, Apr 05 2012
  • Mathematica
    Clear[b];b[1] = 0; b[2] = 0; b[3] = 1; b[4] = 1; b[5] = 3; b[6] = 3; b[7] = 15;b[8] = 6;b[n_Integer] := b[n] = ((-2 + n) (-4 (-4 + n) (-3 + n) (-2 + n) (8 + n (-9 + 2 n)) b[-3 + n] + (-5 + n) ((-3 +n) ((-4 + n) (211 + 2 n (-215 + n (147 + n (-41 + 4 n)))) - 4 (-1 + n) (19 + n (-13 + 2 n)) b[-2 + n]) - 4 (-4 + n)^2 (8 + n (-9 + 2 n)) b[-1 + n])))/(4 (-5 + n) (-4 + n) (-3 + n)^2 (19 + n (-13 + 2 n)))
    a = Table[b[n], {n, 1, 52}] (* Roger L. Bagula, Mar 14 2012 *)
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{0,0,1,1,3,3,15,6,14,10,45,15},60] (* Harvey P. Dale, Nov 23 2015 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(-x^2*(3*x^8+x^7+5*x^6+3*x^5+12*x^4+3*x^3+3*x^2+x+1)/ ((x-1)^3*(x+1)^3*(x^2+1)^3))) \\ G. C. Greubel, Jun 23 2017

Formula

a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(2*n) = A064038(2*n), a(2*n+1) = A000217(n).
a(n) = 3*A208950(n)/A109613(n).
a(n+1) = A060819(n) * A026741(n+2)(floor(n/2)).
G.f.: -x^2*(3*x^8+x^7+5*x^6+3*x^5+12*x^4+3*x^3+3*x^2+x+1)/ ((x-1)^3*(x+1)^3*(x^2+1)^3). - R. J. Mathar, Mar 22 2012
a(n) = (4*n^2-3*n-1+(2*n^2-3*n+1)*(-1)^n + n*(n-1)*(1+(-1)^n)*(-1)^((2*n-3-(-1)^n)/4))/16. - Luce ETIENNE, May 13 2016
Sum_{n>=2} 1/a(n) = 2 - Pi/4 + 7*log(2)/2. - Amiram Eldar, Aug 12 2022
Showing 1-3 of 3 results.