A123251 Continued fraction for sqrt(2)*tan(1/sqrt(2)).
1, 4, 1, 3, 1, 12, 1, 7, 1, 20, 1, 11, 1, 28, 1, 15, 1, 36, 1, 19, 1, 44, 1, 23, 1, 52, 1, 27, 1, 60, 1, 31, 1, 68, 1, 35, 1, 76, 1, 39, 1, 84, 1, 43, 1, 92, 1, 47, 1, 100, 1, 51, 1, 108, 1, 55, 1, 116, 1, 59, 1, 124, 1, 63, 1, 132, 1, 67, 1, 140, 1, 71, 1, 148, 1, 75, 1, 156, 1, 79, 1
Offset: 1
Examples
From _Peter Bala_ Oct 03 2023: (Start) For k > 1, the simple continued fraction expansion of sqrt(2)*tan(sqrt(2)/(2*k)) is [0; k - 1, 1, 2*3*k - 2, 1, 5*k - 2, 1, 2*7*k - 2, 1, 9*k - 2, 1, 2*11*k - 2, 1, 13*k - 2, 1, 2*15*k - 2, 1, ...], and the simple continued fraction expansion of (sqrt(2)/2)*tan(sqrt(2)/(2*k)) is [0; 2*k - 1, 1, 3*k - 2, 1, 2*5*k - 2, 1, 7*k - 2, 1, 2*9*k - 2, 1, 11*k - 2, 1, 2*13*k - 2, 1, 15*k - 2, 1, ...]. (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A123168.
Programs
-
Magma
continuedFraction(Sqrt(2)*Tan(1/Sqrt(2))); // G. C. Greubel, Oct 12 2018
-
Maple
cfrac(sqrt(2)*tan(1/sqrt(2)),81,'quotients'); # Muniru A Asiru, Oct 13 2018
-
Mathematica
ContinuedFraction[Sqrt[2]*Tan[1/Sqrt[2]], 100] (* G. C. Greubel, Oct 12 2018 *)
-
PARI
contfrac(sqrt(2)*tan(1/sqrt(2))) \\ G. C. Greubel, Oct 12 2018
Formula
For n >= 1 we have a(12*n-11) = a(12*n-9) = a(12*n-7) = a(12*n-5) = a(12*n-3) = a(12*n-1) = 1; a(12*n-10) = 24*n-20; a(12*n-8) = 12*n-9; a(12*n-6) = 24*n-12; a(12*n-4) = 12*n-5; a(12*n-2) = 24*n-4; a(12*n) = 12*n-1.
Empirical g.f.: x*(x^7 - x^6 + 4*x^5 - x^4 + 3*x^3 + x^2 + 4*x + 1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Jun 28 2013
a(2*n-1) = 1, a(4*n) = 4*n-1 and a(4*n-2) = 8*n-4 for n >= 1. - Peter Bala, Oct 02 2023
Comments