cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A226721 Position of 2^n in the joint ranking of all the numbers 2^j for j>=0 and 5^k for k>=1; complement of A123384.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 21, 22, 23, 25, 26, 28, 29, 31, 32, 33, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 55, 56, 58, 59, 61, 62, 63, 65, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 91, 92, 93, 95
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2013

Keywords

Examples

			The joint ranking of the powers of 2 and of 5 begins like this: 1, 2, 4, 5, 8, 16, 25, 32, 64, 125, 128, 256, 512.  The numbers 2^n for n >= 1 are in positions 2, 3, 5, 6, 8, 9, 11, 12, 13.
		

Crossrefs

Programs

  • Mathematica
    b = 2; c=5; Floor[1 + Range[0, 100]*(1 + Log[b, c])]  (* A123384 *)
    Floor[1 + Range[1, 100]*(1 + Log[c, b])]  (* A226721 *)

Formula

a(n) = 1 + A066344(n).
a(n) = 1 + floor(n*(1 + log_5(2))).

A352378 Irregular triangle read by rows: T(n,k) is the (n-th)-to-last digit of 2^p such that p == k + A123384(n-1) (mod A005054(n)); k >= 0.

Original entry on oeis.org

2, 4, 8, 6, 1, 3, 6, 2, 5, 1, 2, 4, 9, 9, 8, 6, 3, 7, 4, 8, 7, 5, 0, 0, 1, 2, 5, 0, 0, 0, 1, 3, 7, 5, 0, 1, 2, 5, 1, 3, 6, 2, 4, 8, 7, 4, 9, 8, 6, 2, 5, 1, 3, 7, 4, 9, 8, 7, 5, 1, 2, 4, 8, 6, 3, 6, 3, 6, 2, 4, 9, 9, 9, 9, 8, 7, 4, 9, 9, 9, 8, 6, 2, 4, 9, 8, 7, 4, 8, 6, 3, 7, 5, 1, 2, 5, 0, 1, 3, 7, 4, 8, 6, 2, 5, 0, 1
Offset: 1

Views

Author

Davis Smith, Mar 14 2022

Keywords

Comments

The n-th row of this triangle is the cycle of the (n-th)-to-last digit of powers of 2.
The period of the last n digits of powers of 2 where the exponent is greater than or equal to n is A005054(n). As a result, this triangle can be used to get the (n-th)-to-last digit of a large power of 2; if p == k + A123384(n-1) (mod A005054(n)), then the (n-th)-to-last digit (base 10) of 2^p is T(n,k). For example, for n = 1, if p == 1 (mod 4), then 2^p == 2 (mod 10) and if p == 3 (mod 4), then 2^p == 8 (mod 10). For n = 2, if p == 4 (mod 20), then the second-to-last digit of 2^p (base 10) is 1 and if p == 7 (mod 20), then the second-to-last digit of 2^p (base 10) is 2.

Examples

			Irregular triangle begins:
n/k| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... | Number of terms:
---+---------------------------------------+-----------------
1  | 2, 4, 8, 6;                           |                4
2  | 1, 3, 6, 2, 5, 1, 2, 4, 9, 9,  8, ... |               20
3  | 1, 2, 5, 0, 0, 0, 1, 3, 7, 5,  0, ... |              100
4  | 1, 2, 4, 8, 6, 2, 5, 1, 2, 4,  8, ... |              500
5  | 1, 3, 6, 3, 6, 2, 4, 9, 9, 8,  7, ... |             2500
6  | 1, 2, 5, 0, 0, 1, 3, 7, 5, 1,  2, ... |            12500
...
		

Crossrefs

The (n-th)-to-last digit of a power of 2: A000689 (n=1), A160590 (n=2).

Programs

  • PARI
    A352378_rows(n)=my(N=logint(10^(n-1),2),k=4*5^(n-1)); vector(k,v,floor(lift(Mod(2,10^n)^(v+N))/(10^(n-1))))

Formula

For n > 1, T(n,0) = 1.

A253635 Rectangular array read by upwards antidiagonals: a(n,k) = index of largest term <= 10^k in row n of A253572, n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 4, 1, 7, 7, 1, 9, 20, 10, 1, 10, 34, 40, 14, 1, 10, 46, 86, 67, 17, 1, 10, 55, 141, 175, 101, 20, 1, 10, 62, 192, 338, 313, 142, 24, 1, 10, 67, 242, 522, 694, 507, 190, 27, 1, 10, 72, 287, 733, 1197, 1273, 768, 244, 30
Offset: 1

Views

Author

L. Edson Jeffery, Jan 07 2015

Keywords

Comments

Or a(n,k) = the number of positive integers less than or equal to 10^k that are divisible by no prime exceeding prime(n).

Examples

			Array begins:
{1,  4,  7,  10,   14,   17,    20,    24,    27,     30, ...}
{1,  7, 20,  40,   67,  101,   142,   190,   244,    306, ...}
{1,  9, 34,  86,  175,  313,   507,   768,  1105,   1530, ...}
{1, 10, 46, 141,  338,  694,  1273,  2155,  3427,   5194, ...}
{1, 10, 55, 192,  522, 1197,  2432,  4520,  7838,  12867, ...}
{1, 10, 62, 242,  733, 1848,  4106,  8289, 15519,  27365, ...}
{1, 10, 67, 287,  945, 2579,  6179, 13389, 26809,  50351, ...}
{1, 10, 72, 331, 1169, 3419,  8751, 20198, 42950,  85411, ...}
{1, 10, 76, 369, 1385, 4298, 11654, 28434, 63768, 133440, ...}
{1, 10, 79, 402, 1581, 5158, 14697, 37627, 88415, 193571, ...}
		

Crossrefs

Programs

  • Mathematica
    r = 10; y[1] = t = Table[2^j, {j, 0, 39}]; max = 10^13; len = 10^10; prev = 0; For[n = 2, n <= r, n++, next = 0; For[k = 1, k <= 43, k++, If[Prime[n]^k < max, t = Union[t, Prime[n]*t]; s = FirstPosition[t, v_ /; v > len, 0]; t = Take[t, s[[1]] - 1]; If[t[[-1]] > len, t = Delete[t, -1]]; next = Length[t]; If[next == prev, Break, prev = next], Break]]; y[n] = t]; b[i_, j_] := FirstPosition[y[i], v_ /; v > 10^j][[1]]; a253635[n_, j_] := If[IntegerQ[b[n, j]], b[n, j] - 1, 0]; Flatten[Table[a253635[n - j, j], {n, r}, {j, 0, n - 1}]] (* array antidiagonals flattened *)

A226720 Complement of A122437.

Original entry on oeis.org

2, 4, 5, 7, 9, 10, 12, 14, 15, 17, 18, 20, 22, 23, 25, 27, 28, 30, 31, 33, 35, 36, 38, 40, 41, 43, 45, 46, 48, 49, 51, 53, 54, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 89, 90, 92, 93, 95, 97, 98, 100, 102, 103, 105, 107
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2013

Keywords

Comments

Suppose that b and c are integers satisfying 1 < b < c. Let x = 1 + log_b(c) and y = 1 + log_c(b). Jointly rank all the numbers b^k for k>=0 and c^k for k>=1; then for n >= 0, the position of b^n is 1 + floor(n*y), and for n >=1, the position of c^n is 1+ floor(n*x).
These position sequences are closely related to the Beatty sequences given by floor(n*x) and floor(n*y).

Examples

			The joint ranking of the powers of 2 and of 3 begins like this: 1, 2, 3, 4, 8, 9, 16, 27, 32, 64. The numbers 2^n for n >= 1 are in positions 2, 4, 5, 7, 9, 10.
		

Crossrefs

Programs

  • Mathematica
    b = 2; c=3; Floor[1 + Range[0, 100]*(1 + Log[b, c])]  (* A123384 *)
    Floor[1 + Range[1, 100]*(1 + Log[c, b])]  (* A226721 *)

A226722 Positions of the numbers 2^n, for n >=0, in the joint ranking of all the numbers 2^h, 3^k, 5^k, for h >= 0, k >= 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 11, 12, 15, 17, 18, 21, 22, 25, 27, 29, 31, 33, 35, 37, 39, 41, 44, 45, 47, 50, 51, 54, 56, 58, 60, 61, 64, 66, 68, 70, 73, 74, 76, 78, 80, 83, 84, 87, 89, 90, 93, 95, 97, 99, 101, 103, 105, 107, 109, 112, 113, 116, 117, 119, 122, 123, 126
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2013

Keywords

Examples

			The joint ranking of the powers of 2, 3, 5 begins like this: 1, 2, 3, 4, 5, 8, 9, 16, 25, 27, 32, 64, 81, 125, 128, 243, 256, 512.  The numbers 2^n for n >= 0 are in positions 1, 2, 4, 6, 8, 11, 12, 15, 17, 18.
		

Crossrefs

Programs

  • Mathematica
    z = 120; b = 2; c = 3; d = 5; f[x_]:=Floor[x];
    Table[n + f[(n-1)*Log[c, b]] + f[(n-1)*Log[d, b]], {n, 1, z}]  (* this sequence *)
    Table[1 + n + f[n*Log[b, c]] + f[n*Log[d, c]], {n, 1, z}]  (* A226723 *)
    Table[1 + n + f[n*Log[b, d]] + f[n*Log[c, d]], {n, 1, z}]  (* A226724 *)

Formula

a(n) = n + floor((n-1)*log_3(2)) + floor((n-1)*log_5(2)). [corrected by Jason Yuen, Nov 02 2024]

A226723 Positions of the numbers 3^n, for n >= 1, in the joint ranking of all the numbers 2^h, 3^k, 5^k, for h >= 0, k >= 1.

Original entry on oeis.org

3, 7, 10, 13, 16, 20, 23, 26, 30, 32, 36, 40, 42, 46, 49, 52, 55, 59, 62, 65, 69, 72, 75, 79, 82, 85, 88, 92, 94, 98, 102, 104, 108, 111, 114, 118, 121, 124, 127, 131, 133, 137, 141, 144, 147, 150, 154, 157, 160, 164, 166, 170, 174, 176, 180, 183, 186, 189
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2013

Keywords

Examples

			The joint ranking of the powers of 2, 3, 5 begins like this: 1, 2, 3, 4, 5, 8, 9, 16, 25, 27, 32, 64, 81, 125, 128, 243, 256, 512.  The numbers 3^n for n >= 1 are in positions 3, 7, 10, 13, 16.
		

Crossrefs

Programs

  • Mathematica
    z = 120; b = 2; c = 3; d = 5; f[x_]:=Floor[x];
    Table[1 + n + f[n*Log[c, b]] + f[n*Log[d, b]], {n, 0, z}]  (* A226722 *)
    Table[1 + n + f[n*Log[b, c]] + f[n*Log[d, c]], {n, 1, z}]  (* A226723 *)
    Table[1 + n + f[n*Log[b, d]] + f[n*Log[c, d]], {n, 1, z}]  (* A226724 *)

Formula

a(n) = 1 + n + floor(n*log_2(3)) + floor(n*log_5(3)).

A226724 Positions of the numbers 5^n, for n >= 1, in the joint ranking of all the numbers 2^h, 3^k, 5^k, for h >= 0, k >= 1.

Original entry on oeis.org

5, 9, 14, 19, 24, 28, 34, 38, 43, 48, 53, 57, 63, 67, 71, 77, 81, 86, 91, 96, 100, 106, 110, 115, 120, 125, 129, 135, 139, 143, 148, 153, 158, 162, 168, 172, 177, 182, 187, 191, 197, 201, 205, 211, 215, 220, 225, 230, 234, 240, 244, 249, 254, 259, 263, 269
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2013

Keywords

Examples

			The joint ranking of the powers of 2, 3, 5 begins like this: 1, 2, 3, 4, 5, 8, 9, 16, 25, 27, 32, 64, 81, 125, 128, 243, 256, 512.  The numbers 5^n for n >= 0 are in positions 5, 9, 14.
		

Crossrefs

Programs

  • Mathematica
    z = 120; b = 2; c = 3; d = 5; f[x_]:=Floor[x];
    Table[1 + n + f[n*Log[c, b]] + f[n*Log[d, b]], {n, 0, z}]  (* A226722 *)
    Table[1 + n + f[n*Log[b, c]] + f[n*Log[d, c]], {n, 1, z}]  (* A226723 *)
    Table[1 + n + f[n*Log[b, d]] + f[n*Log[c, d]], {n, 1, z}]  (* A226724 *)

Formula

a(n) = 1 + n + floor(n*log_2(5)) + floor(n*log_3(5)).

A108276 Number of positive integers <= 10^n that are divisible by no prime exceeding 19.

Original entry on oeis.org

1, 10, 72, 331, 1169, 3419, 8751, 20198, 42950, 85411, 160626, 288126, 496303, 825326, 1330766, 2088013, 3197529, 4791093, 7039193, 10159603, 14427309, 20186026, 27861175, 37974797, 51162295, 68191379, 89983125, 117635672
Offset: 0

Views

Author

Robert G. Wilson v, May 31 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 9; t = Select[ Flatten[ Table[19^h*Select[ Flatten[ Table[17^g*Select[ Flatten[ Table[13^f*Select[ Flatten[ Table[11^e*Select[ Flatten[ Table[7^d*Select[ Flatten[ Table[5^c*Select[ Flatten[ Table[2^a*3^b, {a, 0, n*Log[2, 10]}, {b, 0, n*Log[3, 10]}]], # <= 10^n &], {c, 0, n*Log[5, 10]}]], # <= 10^n &], {d, 0, n*Log[7, 10]}]], # <= 10^n &], {e, 0, n*Log[11, 10]}]], # <= 10^n &], {f, 0, n*Log[13, 10]}]], # <= 10^n &], {g, 0, n*Log[17, 10]}]], # <= 10^n &], {h, 0, n*Log[19, 10]}]], # <= 10^n &]; Table[ Length[ Select[t, # <= 10^n &]], {n, 0, 10}]

Extensions

a(10)-a(18) from Donovan Johnson, Sep 16 2009
a(19)-a(27) from Max Alekseyev, Apr 28 2010

A108277 Number of positive integers <= 10^n that are divisible by no prime exceeding 23.

Original entry on oeis.org

1, 10, 76, 369, 1385, 4298, 11654, 28434, 63768, 133440, 263529, 495412, 892644, 1550012, 2605342, 4254753, 6771752, 10531080, 16038303, 23965659, 35195450, 50872227, 72464493, 101837746, 141340075, 193902062, 263152095, 353549942
Offset: 0

Views

Author

Robert G. Wilson v, May 31 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 6; t = Select[ Flatten[ Table[23^i*Select[ Flatten[ Table[19^h*Select[ Flatten[ Table[17^g*Select[ Flatten[ Table[13^f*Select[ Flatten[ Table[11^e*Select[ Flatten[ Table[7^d*Select[ Flatten[ Table[5^c*Select[ Flatten[ Table[2^a*3^b, {a, 0, n*Log[2, 10]}, {b, 0, n*Log[3, 10]}]], # <= 10^n &], {c, 0, n*Log[5, 10]}]], # <= 10^n &], {d, 0, n*Log[7, 10]}]], # <= 10^n &], {e, 0, n*Log[11, 10]}]], # <= 10^n &], {f, 0, n*Log[13, 10]}]], # <= 10^n &], {g, 0, n*Log[17, 10]}]], # <= 10^n &], {h, 0, n*Log[19, 10]}]], # <= 10^n &], {i, 0, n*Log[23, 10]}]], # <= 10^n &]; Table[ Length[ Select[t, # <= 10^n &]], {n, 0, 10}]

Extensions

a(7)-a(18) from Donovan Johnson, Sep 16 2009
a(19)-a(27) from Max Alekseyev, Apr 28 2010

A158333 Position of number of digits increment in the sequence of powers of 3.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 133, 135
Offset: 0

Views

Author

Keywords

Examples

			For n=1 a(1)=3 since the sequence of powers of 3 is 1, 3, 9, 27, 81, 243, 729 and numbers of digits increase at position 1,3,5,...
		

Crossrefs

Programs

  • Maple
    A158333 := proc(n)
            1+floor(n/log10(3)) ;
    end proc:
    seq(A158333(n),n=0..20) ; # R. J. Mathar, Sep 01 2014
  • Mathematica
    a[x_] := 1 + Floor[x/Log[10, 3]]; Table[a[i], {i, 0, 20}]

Formula

a(n)=1+Floor(n/Log_10(3)) = 1+A054965(n).

Extensions

Indices in offset, example, and formula adjusted by R. J. Mathar, May 21 2009
More terms from Robert G. Wilson v, May 29 2009
Showing 1-10 of 13 results. Next