cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123491 Diagonal sums of number triangle A123490.

Original entry on oeis.org

1, 2, 5, 10, 22, 48, 112, 274, 715, 1982, 5837, 18180, 59644, 205296, 739032, 2775180, 10846965, 44039754, 185391469, 807776198, 3637193474, 16900721824, 80939650552, 399061251246, 2023408865983, 10540656630118
Offset: 0

Views

Author

Paul Barry, Oct 01 2006

Keywords

Crossrefs

Cf. A123490.

Programs

  • Mathematica
    Table[Sum[((k + 2)^(n - 2 k) + k)/(k + 1), {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Oct 14 2017 *)
  • PARI
    for(n=0,25, print1(sum(k=0,floor(n/2), ((k + 2)^(n - 2 k) + k)/(k + 1)), ", ")) \\ G. C. Greubel, Oct 14 2017

Formula

a(n) = Sum_{k=0..floor(n/2)} ((k+2)^(n-2k)+k)/(k+1).

A103439 a(n) = Sum_{i=0..n-1} Sum_{j=0..i} (i-j+1)^j.

Original entry on oeis.org

0, 1, 3, 7, 16, 39, 105, 315, 1048, 3829, 15207, 65071, 297840, 1449755, 7468541, 40555747, 231335960, 1381989881, 8623700811, 56078446615, 379233142800, 2662013133295, 19362917622001, 145719550012299, 1133023004941272, 9090156910550109, 75161929739797519
Offset: 0

Views

Author

Ralf Stephan, Feb 11 2005

Keywords

Comments

Partial sums of A026898.
Antidiagonal sums of array A103438.
Row sums of A123490. - Paul Barry, Oct 01 2006

Crossrefs

Programs

  • Magma
    [0] cat [(&+[ (&+[ (k-j+1)^j : j in [0..k]]) : k in [0..n-1]]): n in [1..30]]; // G. C. Greubel, Jun 15 2021
    
  • Maple
    b:= proc(i) option remember; add((i-j+1)^j, j=0..i) end:
    a:= proc(n) option remember; add(b(i), i=0..n-1) end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 02 2019
  • Mathematica
    Join[{0},Table[Sum[Sum[(i-j+1)^j,{j,0,i}],{i,0,n}],{n,0,30}]] (* Harvey P. Dale, Dec 03 2018 *)
  • PARI
    a(n) = sum(i=0, n-1, sum(j=0, i, (i-j+1)^j)); \\ Michel Marcus, Jun 15 2021
  • Sage
    [sum(sum((k-j+1)^j for j in (0..k)) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, Jun 15 2021
    

Formula

a(n+1) = Sum_{k=0..n} ((k+2)^(n-k) + k)/(k+1). - Paul Barry, Oct 01 2006
G.f.: (G(0)-1)/(1-x) where G(k) = 1 + x*(2*k*x-1)/(2*k*x+x-1 - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 26 2013

Extensions

Name edited by Alois P. Heinz, Dec 02 2019
Showing 1-2 of 2 results.