cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A103438 Square array T(m,n) read by antidiagonals: Sum_{k=1..n} k^m.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 5, 6, 4, 0, 1, 9, 14, 10, 5, 0, 1, 17, 36, 30, 15, 6, 0, 1, 33, 98, 100, 55, 21, 7, 0, 1, 65, 276, 354, 225, 91, 28, 8, 0, 1, 129, 794, 1300, 979, 441, 140, 36, 9, 0, 1, 257, 2316, 4890, 4425, 2275, 784, 204, 45, 10
Offset: 0

Views

Author

Ralf Stephan, Feb 11 2005

Keywords

Comments

For the o.g.f.s of the column sequences for this array, see A196837 and the link given there. - Wolfdieter Lang, Oct 15 2011
T(m,n)/n is the m-th moment of the discrete uniform distribution on {1,2,...,n}. - Geoffrey Critzer, Dec 31 2018
T(1,n) divides T(m,n) for odd m. - Franz Vrabec, Dec 23 2020

Examples

			Square array begins:
  0, 1,  2,   3,    4,     5,     6,      7,      8,      9, ... A001477;
  0, 1,  3,   6,   10,    15,    21,     28,     36,     45, ... A000217;
  0, 1,  5,  14,   30,    55,    91,    140,    204,    285, ... A000330;
  0, 1,  9,  36,  100,   225,   441,    784,   1296,   2025, ... A000537;
  0, 1, 17,  98,  354,   979,  2275,   4676,   8772,  15333, ... A000538;
  0, 1, 33, 276, 1300,  4425, 12201,  29008,  61776, 120825, ... A000539;
  0, 1, 65, 794, 4890, 20515, 67171, 184820, 446964, 978405, ... A000540;
Antidiagonal triangle begins as:
  0;
  0, 1;
  0, 1,  2;
  0, 1,  3,  3;
  0, 1,  5,  6,  4;
  0, 1,  9, 14, 10,  5;
  0, 1, 17, 36, 30, 15, 6;
		

References

  • J. Faulhaber, Academia Algebrae, Darinnen die miraculosische inventiones zu den höchsten Cossen weiters continuirt und profitirt werden, Augspurg, bey Johann Ulrich Schönigs, 1631.

Crossrefs

Diagonals include A076015 and A031971.
Antidiagonal sums are in A103439.
Antidiagonals are the rows of triangle A192001.

Programs

  • Magma
    T:= func< n,k | n eq 0 select k else (&+[j^n: j in [0..k]]) >;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 22 2021
    
  • Maple
    seq(print(seq(Zeta(0,-k,1)-Zeta(0,-k,n+1),n=0..9)),k=0..6);
    # (Produces the square array from the example.) Peter Luschny, Nov 16 2008
    # alternative
    A103438 := proc(m,n)
        (bernoulli(m+1,n+1)-bernoulli(m+1))/(m+1) ;
        if m = 0 then
            %-1 ;
        else
            % ;
        end if;
    end proc: # R. J. Mathar, May 10 2013
    # simpler:
    A103438 := proc(m,n)
        (bernoulli(m+1,n+1)-bernoulli(m+1,1))/(m+1) ;
    end proc: # Peter Luschny, Mar 20 2024
  • Mathematica
    T[m_, n_]:= HarmonicNumber[m, -n]; Flatten[Table[T[m-n, n], {m, 0, 11}, {n, m, 0, -1}]] (* Jean-François Alcover, May 11 2012 *)
  • PARI
    T(m,n)=sum(k=0,n,k^m)
    
  • Python
    from itertools import count, islice
    from math import comb
    from fractions import Fraction
    from sympy import bernoulli
    def A103438_T(m,n): return sum(k**m for k in range(1,n+1)) if n<=m else int(sum(comb(m+1,i)*(bernoulli(i) if i!=1 else Fraction(1,2))*n**(m-i+1) for i in range(m+1))/(m+1))
    def A103438_gen(): # generator of terms
        for m in count(0):
            for n in range(m+1):
                yield A103438_T(m-n,n)
    A103438_list = list(islice(A103438_gen(),100)) # Chai Wah Wu, Oct 23 2024
  • SageMath
    def T(n,k): return (bernoulli_polynomial(k+1, n+1) - bernoulli_polynomial(1, n+1)) /(n+1)
    flatten([[T(n-k,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 22 2021
    

Formula

E.g.f.: e^x*(e^(x*y)-1)/(e^x-1).
T(m, n) = Zeta(-n, 1) - Zeta(-n, m + 1), for m >= 0 and n >= 0, where Zeta(z, v) is the Hurwitz zeta function. - Peter Luschny, Nov 16 2008
T(m, n) = HarmonicNumber(m, -n). - Jean-François Alcover, May 11 2012
T(m, n) = (Bernoulli(m + 1, n + 1) - Bernoulli(m + 1, 1)) / (m + 1). - Peter Luschny, Mar 20 2024
T(m, n) = Sum_{k=0...m-n} B(k)*(-1)^k*binomial(m-n,k)*n^(m-n-k+1)/(m-n-k+1), where B(k) = Bernoulli number A027641(k) / A027642(k). - Robert B Fowler, Aug 20 2024
T(m, n) = Sum_{i=1..n} J_m(i)*floor(n/i), where J_m is the m-th Jordan totient function. - Ridouane Oudra, Jul 19 2025

A026898 a(n) = Sum_{k=0..n} (n-k+1)^k.

Original entry on oeis.org

1, 2, 4, 9, 23, 66, 210, 733, 2781, 11378, 49864, 232769, 1151915, 6018786, 33087206, 190780213, 1150653921, 7241710930, 47454745804, 323154696185, 2282779990495, 16700904488706, 126356632390298, 987303454928973, 7957133905608837, 66071772829247410
Offset: 0

Views

Author

Keywords

Comments

Row sums of A004248, A009998, A009999.
First differences are in A047970.
First differences of A103439.
Antidiagonal sums of array A003992.
a(n-1), for n>=1, is the number of length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(0)=0 and s(k)<=1+max(prefix) for k>=1, that are simultaneously projections as maps f: [n] -> [n] where f(x)<=x and f(f(x))=f(x); see example and the two comments (Arndt, Apr 30 2011 Jan 04 2013) in A000110. - Joerg Arndt, Mar 07 2015
Number of finite sequences s of length n+1 whose discriminator sequence is s itself. Here the discriminator sequence of s is the one where the n-th term (n>=1) is the least positive integer k such that the first n terms are pairwise incongruent, modulo k. - Jeffrey Shallit, May 17 2016
From Gus Wiseman, Jan 08 2019: (Start)
Also the number of set partitions of {1,...,n+1} whose minima form an initial interval of positive integers. For example, the a(3) = 9 set partitions are:
{{1},{2},{3},{4}}
{{1},{2},{3,4}}
{{1},{2,4},{3}}
{{1,4},{2},{3}}
{{1},{2,3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1,3,4},{2}}
{{1,2,3,4}}
Missing from this list are:
{{1},{2,3},{4}}
{{1,2},{3},{4}}
{{1,3},{2},{4}}
{{1,2},{3,4}}
{{1,2,3},{4}}
{{1,2,4},{3}}
(End)
a(n) is the number of m-tuples of nonnegative integers less than or equal to n-m (including the "0-tuple"). - Mathew Englander, Apr 11 2021

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 23*x^4 + 66*x^5 + 210*x^6 + ...
where we have the identity:
A(x) = 1/(1-x) + x/(1-2*x) + x^2/(1-3*x) + x^3/(1-4*x) + x^4/(1-5*x) + ...
is equal to
A(x) = 1/(1-x) + x/((1-x)^2*(1+x)) + 2!*x^2/((1-x)^3*(1+x)*(1+2*x)) + 3!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^4/((1-x)^5*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
From _Joerg Arndt_, Mar 07 2015: (Start)
The a(5-1) = 23 RGS described in the comment are (dots denote zeros):
01:  [ . . . . . ]
02:  [ . 1 . . . ]
03:  [ . 1 . . 1 ]
04:  [ . 1 . 1 . ]
05:  [ . 1 . 1 1 ]
06:  [ . 1 1 . . ]
07:  [ . 1 1 . 1 ]
08:  [ . 1 1 1 . ]
09:  [ . 1 1 1 1 ]
10:  [ . 1 2 . . ]
11:  [ . 1 2 . 1 ]
12:  [ . 1 2 . 2 ]
13:  [ . 1 2 1 . ]
14:  [ . 1 2 1 1 ]
15:  [ . 1 2 1 2 ]
16:  [ . 1 2 2 . ]
17:  [ . 1 2 2 1 ]
18:  [ . 1 2 2 2 ]
19:  [ . 1 2 3 . ]
20:  [ . 1 2 3 1 ]
21:  [ . 1 2 3 2 ]
22:  [ . 1 2 3 3 ]
23:  [ . 1 2 3 4 ]
(End)
		

Crossrefs

Programs

  • Haskell
    a026898 n = sum $ zipWith (^) [n + 1, n .. 1] [0 ..]
    -- Reinhard Zumkeller, Sep 14 2014
    
  • Magma
    [(&+[(n-k+1)^k: k in [0..n]]): n in [0..50]]; // Stefano Spezia, Jan 09 2019
    
  • Maple
    a:= n-> add((n+1-j)^j, j=0..n): seq(a(n), n=0..23); # Zerinvary Lajos, Apr 18 2009
  • Mathematica
    Table[Sum[(n-k+1)^k, {k,0,n}], {n, 0, 25}] (* Michael De Vlieger, Apr 01 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m/(1-(m+1)*x+x*O(x^n))),n)} /* Paul D. Hanna, Sep 13 2011 */
    
  • PARI
    {INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
    {a(n)=local(A=1+x);A=sum(k=0,n,INTEGRATE(k,exp((k+1)*x+x*O(x^n))));n!*polcoeff(A,n)} \\ Paul D. Hanna, Dec 28 2013
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff( sum(m=0, n, m!*x^m/(1-x +x*O(x^n))^(m+1)/prod(k=1, m, 1+k*x +x*O(x^n))), n)}  /* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
    for(n=0, 25, print1(a(n), ", "))
    
  • Sage
    [sum((n-j+1)^j for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 15 2021

Formula

a(n) = A003101(n) + 1.
G.f.: Sum_{n>=0} x^n/(1 - (n+1)*x). - Paul D. Hanna, Sep 13 2011
G.f.: G(0) where G(k) = 1 + x*(2*k*x-1)/((2*k*x+x-1) - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
E.g.f.: Sum_{n>=0} Integral^n exp((n+1)*x) dx^n, where Integral^n F(x) dx^n is the n-th integration of F(x) with no constant of integration. - Paul D. Hanna, Dec 28 2013
O.g.f.: Sum_{n>=0} n! * x^n/(1-x)^(n+1) / Product_{k=1..n} (1 + k*x). - Paul D. Hanna, Jul 20 2014
a(n) = A101494(n+1,0). - Vladimir Kruchinin, Apr 01 2015
a(n-1) = Sum_{k = 1..n} k^(n-k). - Gus Wiseman, Jan 08 2019
log(a(n)) ~ (1 - 1/LambertW(exp(1)*n)) * n * log(1 + n/LambertW(exp(1)*n)). - Vaclav Kotesovec, Jun 15 2021
a(n) ~ sqrt(2*Pi/(n+1 + (n+1)/w(n))) * ((n+1)/w(n))^(n+2 - (n+1)/w(n)), where w(n) = LambertW(exp(1)*(n+1)). - Vaclav Kotesovec, Jun 25 2021, after user "leonbloy", see Mathematics Stack Exchange link.

Extensions

a(23)-a(25) from Paul D. Hanna, Dec 28 2013

A104879 Row sums of a sum-of-powers triangle.

Original entry on oeis.org

1, 2, 4, 8, 17, 40, 106, 316, 1049, 3830, 15208, 65072, 297841, 1449756, 7468542, 40555748, 231335961, 1381989882, 8623700812, 56078446616, 379233142801, 2662013133296, 19362917622002, 145719550012300, 1133023004941273, 9090156910550110, 75161929739797520
Offset: 0

Views

Author

Paul Barry, Mar 28 2005

Keywords

Crossrefs

Row sums of A104878.
Cf. A103439 (terms differ by 1), A026898 (first differences).

Formula

a(n) = 1 + n + Sum_{k=2..n+1} (k^(n-k+1)-1)/(k-1).
a(n) = 1 + A103439(n). - Mathew Englander, Dec 19 2020

A123490 Triangle whose k-th column satisfies a(n) = (k+3)*a(n-1)-(k+2)*a(n-2).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 5, 2, 1, 16, 14, 6, 2, 1, 32, 41, 22, 7, 2, 1, 64, 122, 86, 32, 8, 2, 1, 128, 365, 342, 157, 44, 9, 2, 1, 256, 1094, 1366, 782, 260, 58, 10, 2, 1, 512, 3281, 5462, 3907, 1556, 401, 74, 11, 2, 1, 1024, 9842, 21846, 19532, 9332, 2802, 586, 92, 12, 2, 1
Offset: 0

Views

Author

Paul Barry, Oct 01 2006

Keywords

Examples

			Triangle begins
     1;
     2,    1;
     4,    2,     1;
     8,    5,     2,     1;
    16,   14,     6,     2,    1;
    32,   41,    22,     7,    2,    1;
    64,  122,    86,    32,    8,    2,   1;
   128,  365,   342,   157,   44,    9,   2,  1;
   256, 1094,  1366,   782,  260,   58,  10,  2,  1;
   512, 3281,  5462,  3907, 1556,  401,  74, 11,  2, 1;
  1024, 9842, 21846, 19532, 9332, 2802, 586, 92, 12, 2, 1;
		

Crossrefs

Columns include A000079, A007051, A047849, A047850, A047851.
Cf. A047848, A103439 (row sums), A123491 (diagonal sums).

Programs

  • Magma
    [((k+2)^(n-k) +k)/(k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 15 2021
    
  • Mathematica
    Table[((k+2)^(n-k) +k)/(k+1), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 14 2017 *)
  • PARI
    for(n=0, 10, for(k=0,n, print1(((k+2)^(n-k)+k)/(k+1), ", "))) \\ G. C. Greubel, Oct 14 2017
    
  • Sage
    flatten([[((k+2)^(n-k) +k)/(k+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 15 2021

Formula

Column k has g.f.: x^k*(1-x(1+k))/((1-x)*(1-x(2+k))).
T(n,k) = ((k+2)^(n-k) + k)/(k+1), for 0 <= k <= n.
Sum_{k=0..n} T(n, k) = A103439(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A123491(n).
Showing 1-4 of 4 results.