A123564 The infinite Fibonacci word reencoded by writing successive non-overlapping pairs of bits as decimal numbers.
2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1
Offset: 1
Examples
a(1) = 2*1+0 = 2; a(2) = 2*1+1 = 3; a(3) = 2*0+1 = 1.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Michel Dekking and Mike Keane, Two-block substitutions and morphic words, arXiv:2202.13548 [math.CO], 2022.
Programs
-
Mathematica
f := 1/GoldenRatio; T[n_] := Floor[2*n*f] - 2*Floor[(2*n - 1)*f] + Floor[(2*n + 1)*f]; Table[T[n], {n, 100}] (* G. C. Greubel, Oct 16 2017 *)
-
PARI
f=(sqrt(5)-1)/2; a(n)= my(m=2*n); floor(m*f)-2*floor((m-1)*f)+floor((m+1)*f); \\ Michel Marcus, Sep 26 2017
Comments