cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alexandre Losev

Alexandre Losev's wiki page.

Alexandre Losev has authored 4 sequences.

A178992 Ordered list in decimal notation of the subwords (with leading zeros omitted) appearing in the infinite Fibonacci word A005614 (0->1 & 1->10).

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 10, 11, 13, 21, 22, 26, 27, 43, 45, 53, 54, 86, 90, 91, 107, 109, 173, 181, 182, 214, 218, 346, 347, 363, 365, 429, 437, 693, 694, 726, 730, 858, 859, 875, 1387, 1389, 1453, 1461, 1717, 1718, 1750, 2774, 2778, 2906, 2907, 2923, 3435, 3437, 3501
Offset: 1

Author

Alexandre Losev, Jan 03 2011

Keywords

Comments

The definition mentions the Fibonacci word A005614. Note that the official Fibonacci word is A003849, which would give a different list, namely, the 2's-complement of the present list. - N. J. A. Sloane, Jan 12 2011

Examples

			The Fibonacci word has a minimal complexity, i.e., for any n there are n+1 distinct subwords of length n (see for example Allouche and Shallit).
E.g. for n=1 they are '0' and '1', for n=2 '01', '10' and '11' or, in decimal notation '1','2',and '3'.
Some subwords prefixed with '0' have the same decimal value as shorter ones, but there is no real ambiguity as double zeros do not appear in the infinite Fibonacci word.
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.

Crossrefs

Programs

  • Mathematica
    iter=8; f=Nest[Flatten[# /. {0 -> {1}, 1 -> {1, 0}}] &, {1}, iter]; u={}; n=1; While[lst={}; k=0; While[num=FromDigits[Take[f, {1, n}+k], 2]; lst=Union[lst, {num}]; Length[lst]
    				

Extensions

Definition clarified by N. J. A. Sloane, Jan 10 2011

A123564 The infinite Fibonacci word reencoded by writing successive non-overlapping pairs of bits as decimal numbers.

Original entry on oeis.org

2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1
Offset: 1

Author

Alexandre Losev, Nov 12 2006

Keywords

Comments

The algorithm used here suggests multiple variations such as using more than 2 bits, allowing overlap of successive subwords, using other numbers for the encoding of subwords or using other binary sequences. (E.g. overlapping: a(n) = 2*A005614(n) + A005614(n+1) )
Essentially equal to A143667. - Michel Dekking, Sep 26 2017

Examples

			a(1) = 2*1+0 = 2;
a(2) = 2*1+1 = 3;
a(3) = 2*0+1 = 1.
		

Crossrefs

Programs

  • Mathematica
    f := 1/GoldenRatio; T[n_] := Floor[2*n*f] - 2*Floor[(2*n - 1)*f] + Floor[(2*n + 1)*f]; Table[T[n], {n, 100}] (* G. C. Greubel, Oct 16 2017 *)
  • PARI
    f=(sqrt(5)-1)/2; a(n)= my(m=2*n); floor(m*f)-2*floor((m-1)*f)+floor((m+1)*f); \\ Michel Marcus, Sep 26 2017

Formula

f = (sqrt(5)-1)/2; m = 2*n; a(n) = floor(m*f) - 2*floor((m-1)*f) + floor((m+1)*f);
a(n) = 2*A005614(2n-1) + A005614(2n), using the infinite Fibonacci word A005614.

A112539 Half-baked Thue-Morse: at successive steps the sequence or its bit-inverted form is appended to itself.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0
Offset: 1

Author

Alexandre Losev, Dec 15 2005

Keywords

Examples

			Triangle begins:
  1;
  0;
  1, 0;
  0, 1, 0, 1;
  1, 0, 1, 0, 0, 1, 0, 1;
  0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0;
  1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0;
  ...
		

Crossrefs

Cf. A112865 (as +-1), A341389 (complement).

Programs

  • Mathematica
    s = {1}; Do[s = Join[s, Mod[s + 1, 2]]; s = Join[s, s], {n, 4}]; s (* Robert G. Wilson v, Dec 22 2005 *)
  • PARI
    aiter(x) = my(s=[1]); for(i=1, x, s=concat(s, if(i%2, [1-e|e<-s], s))); s \\ Ruud H.G. van Tol, Jan 20 2025
  • Python
    s = [1]
    for _ in range(4):
        s = s + [(x + 1) % 2 for x in s]
        s = s + s
    print(s) # Robert C. Lyons, Jan 19 2025
    

Extensions

More terms from Robert G. Wilson v, Dec 22 2005

A108882 Period doubling sequence starting with '1 0 1'.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1
Offset: 1

Author

Alexandre Losev, Jul 14 2005

Keywords

Comments

Start with S = 1,0,1; replace S by SS and complement the last bit; iterate.
Similar to A035263 but with a different start.

Crossrefs

Cf. A035263.

Programs

  • Mathematica
    f[l_] := Block[{s = Flatten[{l, l}]}, s[[ -1]] = Mod[s[[ -1]] + 1, 2]; s]; Nest[f, {1, 0, 1}, 6] (* Robert G. Wilson v, Jul 16 2005 *)
  • Python
    def f(l):
        s = l + l
        s[-1] = (s[-1] + 1) % 2
        return s
    result = [1, 0, 1]
    for _ in range(6):
        result = f(result)
    print(result) # Robert C. Lyons, Jan 19 2025

Extensions

More terms from Robert G. Wilson v, Jul 16 2005