cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123565 a(n) is the number of positive integers k which are <= n and where k, k-1 and k+1 are each coprime to n.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 4, 0, 0, 0, 8, 0, 10, 0, 0, 0, 14, 0, 16, 0, 0, 0, 20, 0, 10, 0, 0, 0, 26, 0, 28, 0, 0, 0, 8, 0, 34, 0, 0, 0, 38, 0, 40, 0, 0, 0, 44, 0, 28, 0, 0, 0, 50, 0, 16, 0, 0, 0, 56, 0, 58, 0, 0, 0, 20, 0, 64, 0, 0, 0, 68, 0, 70, 0, 0, 0, 32, 0, 76, 0, 0, 0, 80, 0, 28, 0, 0, 0, 86, 0, 40, 0, 0
Offset: 1

Views

Author

Leroy Quet, Nov 12 2006

Keywords

Comments

a(p) = p-3 for any odd prime p. a(2n) = a(3n) = 0.
a(n) > 0 if and only if n is coprime to 6. - Chai Wah Wu, Aug 26 2016
Multiplicative by the Chinese remainder theorem. - Andrew Howroyd, Aug 07 2018
From Eduard I. Vatutin, Nov 03 2020: (Start)
a(n) is the number of cyclic diagonal Latin squares of order n with the first row in order. Every cyclic diagonal Latin square is a cyclic Latin square, so a(n) <= A000010(n). Every cyclic diagonal Latin square is pandiagonal, but the converse is not true. For example, for order n=13 there is a square
7 1 0 3 6 5 12 2 8 9 10 11 4
2 3 4 10 0 7 6 9 12 11 5 8 1
4 11 1 7 8 9 10 3 6 0 12 2 5
6 5 8 11 10 4 7 0 1 2 3 9 12
8 9 2 5 12 11 1 4 3 10 0 6 7
3 6 12 0 1 2 8 11 5 4 7 10 9
10 0 3 2 9 12 5 6 7 8 1 4 11
1 7 10 4 3 6 9 8 2 5 11 12 0
11 4 5 6 7 0 3 10 9 12 2 1 8
5 8 7 1 4 10 11 12 0 6 9 3 2
12 2 9 8 11 1 0 7 10 3 4 5 6
9 10 11 12 5 8 2 1 4 7 6 0 3
0 12 6 9 2 3 4 5 11 1 8 7 10
that is pandiagonal but not cyclic (Dabbaghian and Wu). (End)
Schemmel's totient function of order 3 (Schemmel, 1869; Sándor and Crstici, 2004). - Amiram Eldar, Nov 22 2020
a(p) is a lower bound for cardinality of clique of MODLS for all odd prime orders p: a(p) <= A328873(p). - Eduard I. Vatutin, Apr 02 2021
Also number of solutions for n-queens problem on toroidal chessboard (see A051906, A007705 or A370672), given by knight with (dx,dy) movement parameters starting from top left corner (more generally: from one cell fixed for all solutions). - Eduard I. Vatutin, Mar 13 2024

Examples

			The positive integers which are both coprime to 25 and are <= 25 are 1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24. Of these integers there are 10 integers k where (k-1) and (k+1) are also coprime to 25. These integers k are 2,3,7,8,12,13,17,18,22,23. So a(25) = 10.
Example of a cyclic diagonal Latin square of order 5:
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
Example of a cyclic diagonal Latin square of order 7:
  0 1 2 3 4 5 6
  2 3 4 5 6 0 1
  4 5 6 0 1 2 3
  6 0 1 2 3 4 5
  1 2 3 4 5 6 0
  3 4 5 6 0 1 2
  5 6 0 1 2 3 4
From _Eduard I. Vatutin_, Mar 13 2024: (Start)
Example of a(5)=2 solutions for n-queens problem on toroidal chessboard, given by knight with (+1,+2) and (+1,+3) movement parameters starting from top left corner:
.
+-----------+ +-----------+
| Q . . . . | | Q . . . . |
| . . Q . . | | . . . Q . |
| . . . . Q | | . Q . . . |
| . Q . . . | | . . . . Q |
| . . . Q . | | . . Q . . |
+-----------+ +-----------+
.
Example of a(7)=4 solutions for n-queens problem on toroidal chessboard, given by knight with (+1,+2), (+1,+3), (+1,+4), (+1,+5) movement parameters starting from top left corner:
.
+---------------+ +---------------+ +---------------+ +---------------+
| Q . . . . . . | | Q . . . . . . | | Q . . . . . . | | Q . . . . . . |
| . . Q . . . . | | . . . Q . . . | | . . . . Q . . | | . . . . . Q . |
| . . . . Q . . | | . . . . . . Q | | . Q . . . . . | | . . . Q . . . |
| . . . . . . Q | | . . Q . . . . | | . . . . . Q . | | . Q . . . . . |
| . Q . . . . . | | . . . . . Q . | | . . Q . . . . | | . . . . . . Q |
| . . . Q . . . | | . Q . . . . . | | . . . . . . Q | | . . . . Q . . |
| . . . . . Q . | | . . . . Q . . | | . . . Q . . . | | . . Q . . . . |
+---------------+ +---------------+ +---------------+ +---------------+
(End)
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 276.

Crossrefs

Programs

  • Maple
    f:= proc(n) local V,R;
      V:= map(igcd,[$1..n],n);
      R:= V[1..n-2] + V[2..n-1] + V[3..n];
      numboccur(3,R);
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Mar 15 2024
  • Mathematica
    f[n_] := Length[Select[Range[n],GCD[ #, n] == 1 && GCD[ # - 1, n] == 1 && GCD[ # + 1, n] == 1 &]];Table[f[n], {n, 100}] (* Ray Chandler, Nov 19 2006 *)
    Join[{1},Table[Count[Boole[Partition[CoprimeQ[Range[n],n],3,1]],{1,1,1}],{n,2,100}]] (* Harvey P. Dale, Apr 09 2017 *)
    f[2, e_] := 0; f[p_, e_] := (p - 3)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 22 2020 *)
  • PARI
    a(n)=if(gcd(n,6)>1, return(0)); sum(k=1,n,gcd(k^3-k,n)==1) \\ Charles R Greathouse IV, Aug 26 2016

Formula

Multiplicative with a(2^e) = 0 and a(p^e) = (p-3)*p^(e-1) for odd primes p. - Amiram Eldar, Nov 22 2020
a(2*n+1) = A338562(n) / (2*n+1)!. - Eduard I. Vatutin, Apr 02 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime} (1 - 3/p^2) = 0.125486... (A206256). - Amiram Eldar, Nov 18 2022
a(n) = A370672((n-1)/2) / n. - Eduard I. Vatutin, Mar 13 2024

Extensions

Extended by Ray Chandler, Nov 19 2006