cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A007310 Numbers congruent to 1 or 5 mod 6.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175
Offset: 1

Views

Author

C. Christofferson (Magpie56(AT)aol.com)

Keywords

Comments

Numbers n such that phi(4n) = phi(3n). - Benoit Cloitre, Aug 06 2003
Or, numbers relatively prime to 2 and 3, or coprime to 6, or having only prime factors >= 5; also known as 5-rough numbers. (Edited by M. F. Hasler, Nov 01 2014: merged with comments from Zak Seidov, Apr 26 2007 and Michael B. Porter, Oct 09 2009)
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 38 ).
Numbers k such that k mod 2 = 1 and (k+1) mod 3 <> 1. - Klaus Brockhaus, Jun 15 2004
Also numbers n such that the sum of the squares of the first n integers is divisible by n, or A000330(n) = n*(n+1)*(2*n+1)/6 is divisible by n. - Alexander Adamchuk, Jan 04 2007
Numbers n such that the sum of squares of n consecutive integers is divisible by n, because A000330(m+n) - A000330(m) = n*(n+1)*(2*n+1)/6 + n*(m^2+n*m+m) is divisible by n independent of m. - Kaupo Palo, Dec 10 2016
A126759(a(n)) = n + 1. - Reinhard Zumkeller, Jun 16 2008
Terms of this sequence (starting from the second term) are equal to the result of the expression sqrt(4!*(k+1) + 1) - but only when this expression yields integral values (that is when the parameter k takes values, which are terms of A144065). - Alexander R. Povolotsky, Sep 09 2008
For n > 1: a(n) is prime if and only if A075743(n-2) = 1; a(2*n-1) = A016969(n-1), a(2*n) = A016921(n-1). - Reinhard Zumkeller, Oct 02 2008
A156543 is a subsequence. - Reinhard Zumkeller, Feb 10 2009
Numbers n such that ChebyshevT(x, x/2) is not an integer (is integer/2). - Artur Jasinski, Feb 13 2010
If 12*k + 1 is a perfect square (k = 0, 2, 4, 10, 14, 24, 30, 44, ... = A152749) then the square root of 12*k + 1 = a(n). - Gary Detlefs, Feb 22 2010
A089128(a(n)) = 1. Complement of A047229(n+1) for n >= 1. See A164576 for corresponding values A175485(a(n)). - Jaroslav Krizek, May 28 2010
Cf. property described by Gary Detlefs in A113801 and in Comment: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (with h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 6). Also a(n)^2 - 1 == 0 (mod 12). - Bruno Berselli, Nov 05 2010 - Nov 17 2010
Numbers n such that ( Sum_{k = 1..n} k^14 ) mod n = 0. (Conjectured) - Gary Detlefs, Dec 27 2011
From Peter Bala, May 02 2018: (Start)
The above conjecture is true. Apply Ireland and Rosen, Proposition 15.2.2. with m = 14 to obtain the congruence 6*( Sum_{k = 1..n} k^14 )/n = 7 (mod n), true for all n >= 1. Suppose n is coprime to 6, then 6 is a unit in Z/nZ, and it follows from the congruence that ( Sum_{k = 1..n} k^14 )/n is an integer. On the other hand, if either 2 divides n or 3 divides n then the congruence shows that ( Sum_{k = 1..n} k^14 )/n cannot be integral. (End)
A126759(a(n)) = n and A126759(m) < n for m < a(n). - Reinhard Zumkeller, May 23 2013
(a(n-1)^2 - 1)/24 = A001318(n), the generalized pentagonal numbers. - Richard R. Forberg, May 30 2013
Numbers k for which A001580(k) is divisible by 3. - Bruno Berselli, Jun 18 2014
Numbers n such that sigma(n) + sigma(2n) = sigma(3n). - Jahangeer Kholdi and Farideh Firoozbakht, Aug 15 2014
a(n) are values of k such that Sum_{m = 1..k-1} m*(k-m)/k is an integer. Sums for those k are given by A062717. Also see Detlefs formula below based on A062717. - Richard R. Forberg, Feb 16 2015
a(n) are exactly those positive integers m such that the sequence b(n) = n*(n + m)*(n + 2*m)/6 is integral, and also such that the sequence c(n) = n*(n + m)*(n + 2*m)*(n + 3*m)/24 is integral. Cf. A007775. - Peter Bala, Nov 13 2015
Along with 2, these are the numbers k such that the k-th Fibonacci number is coprime to every Lucas number. - Clark Kimberling, Jun 21 2016
This sequence is the Engel expansion of 1F2(1; 5/6, 7/6; 1/36) + 1F2(1; 7/6, 11/6; 1/36)/5. - Benedict W. J. Irwin, Dec 16 2016
The sequence a(n), n >= 4 is generated by the successor of the pair of polygonal numbers {P_s(4) + 1, P_(2*s - 1)(3) + 1}, s >= 3. - Ralf Steiner, May 25 2018
The asymptotic density of this sequence is 1/3. - Amiram Eldar, Oct 18 2020
Also, the only vertices in the odd Collatz tree A088975 that are branch values to other odd nodes t == 1 (mod 2) of A005408. - Heinz Ebert, Apr 14 2021
From Flávio V. Fernandes, Aug 01 2021: (Start)
For any two terms j and k, the product j*k is also a term (the same property as p^n and smooth numbers).
From a(2) to a(phi(A033845(n))), or a((A033845(n))/3), the terms are the totatives of the A033845(n) itself. (End)
Also orders n for which cyclic and semicyclic diagonal Latin squares exist (see A123565 and A342990). - Eduard I. Vatutin, Jul 11 2023
If k is in the sequence, then k*2^m + 3 is also in the sequence, for all m > 0. - Jules Beauchamp, Aug 29 2024

Examples

			G.f. = x + 5*x^2 + 7*x^3 + 11*x^4 + 13*x^5 + 17*x^6 + 19*x^7 + 23*x^8 + ...
		

References

  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1980.

Crossrefs

A005408 \ A016945. Union of A016921 and A016969; union of A038509 and A140475. Essentially the same as A038179. Complement of A047229. Subsequence of A186422.
Cf. A000330, A001580, A002194, A019670, A032528 (partial sums), A038509 (subsequence of composites), A047209, A047336, A047522, A056020, A084967, A090771, A091998, A144065, A175885-A175887.
For k-rough numbers with other values of k, see A000027, A005408, A007775, A008364-A008366, A166061, A166063.
Cf. A126760 (a left inverse).
Row 3 of A260717 (without the initial 1).
Cf. A105397 (first differences).

Programs

Formula

a(n) = (6*n + (-1)^n - 3)/2. - Antonio Esposito, Jan 18 2002
a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4. - Roger L. Bagula
a(n) = 3*n - 1 - (n mod 2). - Zak Seidov, Jan 18 2006
a(1) = 1 then alternatively add 4 and 2. a(1) = 1, a(n) = a(n-1) + 3 + (-1)^n. - Zak Seidov, Mar 25 2006
1 + 1/5^2 + 1/7^2 + 1/11^2 + ... = Pi^2/9 [Jolley]. - Gary W. Adamson, Dec 20 2006
For n >= 3 a(n) = a(n-2) + 6. - Zak Seidov, Apr 18 2007
From R. J. Mathar, May 23 2008: (Start)
Expand (x+x^5)/(1-x^6) = x + x^5 + x^7 + x^11 + x^13 + ...
O.g.f.: x*(1+4*x+x^2)/((1+x)*(1-x)^2). (End)
a(n) = 6*floor(n/2) - 1 + 2*(n mod 2). - Reinhard Zumkeller, Oct 02 2008
1 + 1/5 - 1/7 - 1/11 + + - - ... = Pi/3 = A019670 [Jolley eq (315)]. - Jaume Oliver Lafont, Oct 23 2009
a(n) = ( 6*A062717(n)+1 )^(1/2). - Gary Detlefs, Feb 22 2010
a(n) = 6*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i), with n > 1. - Bruno Berselli, Nov 05 2010
a(n) = 6*n - a(n-1) - 6 for n>1, a(1) = 1. - Vincenzo Librandi, Nov 18 2010
Sum_{n >= 1} (-1)^(n+1)/a(n) = A093766 [Jolley eq (84)]. - R. J. Mathar, Mar 24 2011
a(n) = 6*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
a(n) = 3*n + ((n+1) mod 2) - 2. - Gary Detlefs, Jan 08 2012
a(n) = 2*n + 1 + 2*floor((n-2)/2) = 2*n - 1 + 2*floor(n/2), leading to the o.g.f. given by R. J. Mathar above. - Wolfdieter Lang, Jan 20 2012
1 - 1/5 + 1/7 - 1/11 + - ... = Pi*sqrt(3)/6 = A093766 (L. Euler). - Philippe Deléham, Mar 09 2013
1 - 1/5^3 + 1/7^3 - 1/11^3 + - ... = Pi^3*sqrt(3)/54 (L. Euler). - Philippe Deléham, Mar 09 2013
gcd(a(n), 6) = 1. - Reinhard Zumkeller, Nov 14 2013
a(n) = sqrt(6*n*(3*n + (-1)^n - 3)-3*(-1)^n + 5)/sqrt(2). - Alexander R. Povolotsky, May 16 2014
a(n) = 3*n + 6/(9*n mod 6 - 6). - Mikk Heidemaa, Feb 05 2016
From Mikk Heidemaa, Feb 11 2016: (Start)
a(n) = 2*floor(3*n/2) - 1.
a(n) = A047238(n+1) - 1. (suggested by Michel Marcus) (End)
E.g.f.: (2 + (6*x - 3)*exp(x) + exp(-x))/2. - Ilya Gutkovskiy, Jun 18 2016
From Bruno Berselli, Apr 27 2017: (Start)
a(k*n) = k*a(n) + (4*k + (-1)^k - 3)/2 for k>0 and odd n, a(k*n) = k*a(n) + k - 1 for even n. Some special cases:
k=2: a(2*n) = 2*a(n) + 3 for odd n, a(2*n) = 2*a(n) + 1 for even n;
k=3: a(3*n) = 3*a(n) + 4 for odd n, a(3*n) = 3*a(n) + 2 for even n;
k=4: a(4*n) = 4*a(n) + 7 for odd n, a(4*n) = 4*a(n) + 3 for even n;
k=5: a(5*n) = 5*a(n) + 8 for odd n, a(5*n) = 5*a(n) + 4 for even n, etc. (End)
From Antti Karttunen, May 20 2017: (Start)
a(A273669(n)) = 5*a(n) = A084967(n).
a((5*n)-3) = A255413(n).
A126760(a(n)) = n. (End)
a(2*m) = 6*m - 1, m >= 1; a(2*m + 1) = 6*m + 1, m >= 0. - Ralf Steiner, May 17 2018
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(3) (A002194).
Product_{n>=2} (1 + (-1)^n/a(n)) = Pi/3 (A019670). (End)

A338562 Number of cyclic diagonal Latin squares of order 2n+1.

Original entry on oeis.org

1, 0, 240, 20160, 0, 319334400, 62270208000, 0, 4979623993344000, 1946321606541312000, 0, 517040334777699532800000, 155112100433309859840000000, 0, 229885811837232250818134016000000, 230239482316981838896315760640000000, 0, 82665183731089159437333210700185600000000
Offset: 0

Views

Author

Eduard I. Vatutin, Nov 02 2020

Keywords

Comments

A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places.
Equivalently, a Latin square is cyclic if and only if each row is a cyclic permutation of the first row and each column is a cyclic permutation of the first column.
Every cyclic diagonal Latin square is a cyclic Latin square, so a(n) <= A338522(2*n+1).
Cyclic diagonal Latin squares exist only for odd orders not divisible by 3. - Andrew Howroyd, May 26 2021

Examples

			For n=3 there are 6 cyclic Latin squares of order 7 with the first row in ascending order, only 4 of them are diagonal:
  0 1 2 3 4 5 6   0 1 2 3 4 5 6   0 1 2 3 4 5 6   0 1 2 3 4 5 6
  2 3 4 5 6 0 1   3 4 5 6 0 1 2   4 5 6 0 1 2 3   5 6 0 1 2 3 4
  4 5 6 0 1 2 3   6 0 1 2 3 4 5   1 2 3 4 5 6 0   3 4 5 6 0 1 2
  6 0 1 2 3 4 5   2 3 4 5 6 0 1   5 6 0 1 2 3 4   1 2 3 4 5 6 0
  1 2 3 4 5 6 0   5 6 0 1 2 3 4   2 3 4 5 6 0 1   6 0 1 2 3 4 5
  3 4 5 6 0 1 2   1 2 3 4 5 6 0   6 0 1 2 3 4 5   4 5 6 0 1 2 3
  5 6 0 1 2 3 4   4 5 6 0 1 2 3   3 4 5 6 0 1 2   2 3 4 5 6 0 1
and 4*7! = 20160 cyclic diagonal Latin squares.
		

Crossrefs

Cf. A123565 (ordered first row), A338522, A341585 (main classes), A342306, A370672.

Programs

  • PARI
    a(n)={my(m=2*n+1); m!*if(gcd(m, 6)==1, sum(k=1, m, gcd(k^3-k, m)==1))} \\ Andrew Howroyd, Apr 30 2021

Formula

a(n) = A123565(2*n+1) * (2*n+1)!.
a(n) = A370672(n) * (2n)!. - Eduard I. Vatutin, Mar 13 2024

Extensions

More terms from Andrew Howroyd, Apr 30 2021
Zero terms for even orders removed by Andrew Howroyd, May 26 2021

A071607 Number of strong complete mappings of the cyclic group Z_{2n+1}.

Original entry on oeis.org

1, 0, 2, 4, 0, 8, 348, 0, 8276, 43184, 0, 5602176, 78309000, 0, 20893691564, 432417667152, 0
Offset: 0

Views

Author

J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002

Keywords

Comments

A strong complete mapping of a cyclic group (Z_n,+) is a permutation f(x) of Z_n such that f(0)=0 and that f(x)-x and f(x)+x are both permutations.
a(n) is the number of solutions of the toroidal n-queen problem (A007705) with 2n+1 queens and one queen in the top-left corner.
Also a(n) is the number of horizontally or vertically semicyclic diagonal Latin squares of order 2n+1 with the first row in ascending order. Horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). Vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i). Cyclic diagonal Latin squares (see A123565) fall under the definition of vertically and horizontally semicyclic diagonal Latin squares simultaneously, in this type of squares each row r(i) is obtained from the previous one r(i-1) using cyclic shift by some value d. Definition from A343867 includes this type of squares but not only it. - Eduard I. Vatutin, Jan 25 2022

Examples

			f(x)=2x in (Z_7,+) is a strong complete mapping of Z_7 since f(0)=0 and both f(x)-x (=x) and f(x)+x (=3x) are permutations of Z_7.
From _Eduard I. Vatutin_, Jan 25 2022: (Start)
Example of cyclic diagonal Latin square of order 13:
.
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
.
Example of horizontally semicyclic diagonal Latin square of order 13:
.
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
(End)
From _Eduard I. Vatutin_, Apr 09 2024: (Start)
Example of N-queens problem on toroidal board, N=2*2+1=5, a(2)=2, given by knight with (+1,+2) and (+1,+3) movement parameters starting from top left corner:
.
+-----------+ +-----------+
| Q . . . . | | Q . . . . |
| . . Q . . | | . . . Q . |
| . . . . Q | | . Q . . . |
| . Q . . . | | . . . . Q |
| . . . Q . | | . . Q . . |
+-----------+ +-----------+
.
Example of N-queens problem on toroidal board, N=2*3+1=7, a(3)=4, given by knight with (+1,+2), (+1,+3), (+1,+4), (+1,+5) movement parameters starting from top left corner:
.
+---------------+ +---------------+ +---------------+ +---------------+
| Q . . . . . . | | Q . . . . . . | | Q . . . . . . | | Q . . . . . . |
| . . Q . . . . | | . . . Q . . . | | . . . . Q . . | | . . . . . Q . |
| . . . . Q . . | | . . . . . . Q | | . Q . . . . . | | . . . Q . . . |
| . . . . . . Q | | . . Q . . . . | | . . . . . Q . | | . Q . . . . . |
| . Q . . . . . | | . . . . . Q . | | . . Q . . . . | | . . . . . . Q |
| . . . Q . . . | | . Q . . . . . | | . . . . . . Q | | . . . . Q . . |
| . . . . . Q . | | . . . . Q . . | | . . . Q . . . | | . . Q . . . . |
+---------------+ +---------------+ +---------------+ +---------------+
(End)
		

References

  • Anthony B. Evans,"Orthomorphism Graphs of Groups", vol. 1535 of Lecture Notes in Mathematics, Springer-Verlag, 1991.
  • Y. P. Shieh, J. Hsiang and D. F. Hsu, "On the enumeration of Abelian k-complete mappings", vol. 144 of Congressus Numerantium, 2000, pp. 67-88.

Crossrefs

Formula

a(n) = A007705(n) / (2*n+1).
a(n) = A342990(n) / (2*n+1)!. - Eduard I. Vatutin, Mar 10 2022
a(n) = A051906(2*n+1) / (2*n+1). - Eduard I. Vatutin, Apr 09 2024

Extensions

a(15)-a(16) added using A007705 by Andrew Howroyd, May 07 2021

A338522 Number of cyclic Latin squares of order n.

Original entry on oeis.org

1, 2, 12, 48, 480, 1440, 30240, 161280, 2177280, 14515200, 399168000, 1916006400, 74724249600, 523069747200, 10461394944000, 167382319104000, 5690998849536000, 38414242234368000, 2189611807358976000, 19463216065413120000, 613091306060513280000
Offset: 1

Views

Author

Eduard I. Vatutin, Nov 01 2020

Keywords

Comments

A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places.
Equivalently, a Latin square is cyclic if and only if each row is a cyclic permutation of the first row and each column is a cyclic permutation of the first column.

Examples

			For n=5 there are 4 cyclic Latin squares with the first row in natural order:
  0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
  1 2 3 4 0   2 3 4 0 1   3 4 0 1 2   4 0 1 2 3
  2 3 4 0 1   4 0 1 2 3   1 2 3 4 0   3 4 0 1 2
  3 4 0 1 2   1 2 3 4 0   4 0 1 2 3   2 3 4 0 1
  4 0 1 2 3   3 4 0 1 2   2 3 4 0 1   1 2 3 4 0
and 4*5! = 480 cyclic Latin squares.
		

Crossrefs

Formula

a(n) = phi(n) * n!.
a(n) = A000010(n) * A000142(n).

A341585 Number of main classes of cyclic diagonal Latin squares of order 2n+1.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 3, 0, 4, 4, 0, 5, 1, 0, 7, 7, 0, 1, 9, 0, 10, 10, 0, 11, 1, 0, 13, 2, 0, 14, 15, 0, 3, 16, 0, 17, 18, 0, 4, 19, 0, 20, 4, 0, 22, 5, 0, 4, 24, 0, 25, 25, 0, 26, 27, 0, 28, 5, 0, 7, 2, 0, 1, 31, 0, 32, 8, 0, 34, 34, 0, 10, 7, 0, 37, 37, 0, 7, 39, 0, 10
Offset: 0

Views

Author

Eduard I. Vatutin, Feb 15 2021

Keywords

Comments

There are no cyclic diagonal Latin squares of even order.
All cyclic diagonal Latin squares are pandiagonal. Conversely, all pandiagonal Latin squares are cyclic for orders 5, 7 and 11.
From Andrew Howroyd, May 01 2021: (Start)
Depending on exactly which Latin squares constitute a main class, slightly different sequences are possible. Another variation is given in A343866.
In this sequence equivalence allows for the permutation of symbols, the transpose of rows with columns, and any permutation of rows and columns that preserves the cyclic and diagonal properties. This permutation must transform every cyclic diagonal Latin square into another, but does not necessarily transform an arbitrary diagonal Latin square that is not cyclic into another diagonal Latin square.
The row (or column) permutations that satisfy this requirement form a group and are those where every k-th row (or column) is taken cyclically where k is any number that is congruent to 1 or -1 modulo every prime divisor of the order of the Latin square. (End)

Examples

			For n=0 there is only 1 Latin square of order 1, so a(0)=1.
For n=2 there is one main class with canonical form (CF) of cyclic diagonal Latin squares of order 2n+1=5:
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
so a(2)=1.
For n=3 there is one main class of order 7 with CF:
  0 1 2 3 4 5 6
  2 3 4 5 6 0 1
  4 5 6 0 1 2 3
  6 0 1 2 3 4 5
  1 2 3 4 5 6 0
  3 4 5 6 0 1 2
  5 6 0 1 2 3 4
so a(3)=1.
a(12) = 1. There are A123565(25) = 10 cyclic diagonal Latin squares whose first row is in ascending order. The 10 row permutations constructed by selecting every k-th row cyclically where k is one of 1, 4, 6, 9, 11, 14, 16, 19, 21, 24 (numbers congruent to 1 or -1 modulo 5) transforms each of these between each other so there is only a single class. - _Andrew Howroyd_, May 02 2021
		

Crossrefs

Programs

  • PARI
    G(n)={my(f=factor(n)[,1]); select((d->for(i=1, #f, if((d-1)%f[i]&&(d+1)%f[i], return(0)));1), [1..n])}
    iscanon(n,k,g) = k <= vecmin(g*k%n) && k <= vecmin(g*lift(1/Mod(k,n))%n)
    a(n)={if(n==0, 1, my(m=2*n+1, g=G(m)); sum(k=1, m-1, gcd(m,k)==1 && gcd(m,k-1)==1 && gcd(m,k+1)==1 && iscanon(m, k, g)))} \\ Andrew Howroyd, Apr 30 2021

Formula

a((p-1)/2) = A343866((p-1)/2) for odd prime p. - Andrew Howroyd, May 02 2021

Extensions

Offset corrected and terms a(12) and beyond from Andrew Howroyd, Apr 30 2021

A342998 Minimum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 5, 27, 0, 4523, 128818, 0, 204330233, 11232045257
Offset: 0

Views

Author

Eduard I. Vatutin, Apr 02 2021

Keywords

Comments

A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places (see A338562, A123565 and A341585).
Cyclic diagonal Latin squares do not exist for even orders.
a(n) <= A342997(n).
All cyclic diagonal Latin squares are diagonal Latin squares, so A287647(n) <= a((n-1)/2).

Examples

			For n=2 one of best cyclic diagonal Latin squares of order 5
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
has a(2)=5 diagonal transversals:
  0 . . . .   . 1 . . .   . . 2 . .   . . . 3 .   . . . . 4
  . . 4 . .   . . . 0 .   . . . . 1   2 . . . .   . 3 . . .
  . . . . 3   4 . . . .   . 0 . . .   . . 1 . .   . . . 2 .
  . 2 . . .   . . 3 . .   . . . 4 .   . . . . 0   1 . . . .
  . . . 1 .   . . . . 2   3 . . . .   . 4 . . .   . . 0 . .
		

Crossrefs

A342997 Maximum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 5, 27, 0, 4665, 131106, 0, 204995269, 11254190082
Offset: 0

Views

Author

Eduard I. Vatutin, Apr 02 2021

Keywords

Comments

A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places (see A338562, A123565 and A341585).
Cyclic diagonal Latin squares do not exist for even n.
All cyclic diagonal Latin squares are diagonal Latin squares, so a((n-1)/2) <= A287648(n).
All diagonal transversals are transversals, so a(n) <= A006717(n).
A342998 <= a(n).

Examples

			For n=2 one of the best cyclic diagonal Latin squares of order 5
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
has a(2)=5 diagonal transversals:
  0 . . . .   . 1 . . .   . . 2 . .   . . . 3 .   . . . . 4
  . . 4 . .   . . . 0 .   . . . . 1   2 . . . .   . 3 . . .
  . . . . 3   4 . . . .   . 0 . . .   . . 1 . .   . . . 2 .
  . 2 . . .   . . 3 . .   . . . 4 .   . . . . 0   1 . . . .
  . . . 1 .   . . . . 2   3 . . . .   . 4 . . .   . . 0 . .
		

Crossrefs

A343867 Number of semicyclic pandiagonal Latin squares of order 2*n+1 with the first row in ascending order.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1560, 0, 34000, 175104, 0, 22417824, 313235960, 0, 83574857328, 1729671003296
Offset: 0

Views

Author

Andrew Howroyd, May 08 2021

Keywords

Comments

Pandiagonal Latin squares exist only for odd orders not divisible by 3. All pandiagonal Latin squares for orders less than 13 are cyclic which are not counted by this sequence.
Semicyclic Latin squares are defined in the Atkin reference where the first nonzero term of this sequence is given. They are cyclic in a single direction. The direction can be horizontal or vertical or any other step such as a knights move.
Each symbol in a semicyclic Latin square occupies the same pattern of squares up to translation on the torus which in the case of a pandiagonal square is a solution to the toroidal n-queens problem.
For prime 2n+1, a(n) is a multiple of 2n+1.

Examples

			The following is an example of an order 13 semicyclic square with a step of (1,4). This means moving down one row and across by 4 columns increases the cell value by 1 modulo 13. Symbols can be relabeled to give a square with the first row in ascending order.
   0 11  1  7  5  9  3 10  4  8  6 12  2
   9  7  0  3  1 12  2  8  6 10  4 11  5
  11  5 12  6 10  8  1  4  2  0  3  9  7
   1  4 10  8 12  6  0  7 11  9  2  5  3
  10  3  6  4  2  5 11  9  0  7  1  8 12
   8  2  9  0 11  4  7  5  3  6 12 10  1
   7  0 11  2  9  3 10  1 12  5  8  6  4
   6  9  7  5  8  1 12  3 10  4 11  2  0
   5 12  3  1  7 10  8  6  9  2  0  4 11
   3  1  5 12  6  0  4  2  8 11  9  7 10
  12 10  8 11  4  2  6  0  7  1  5  3  9
   2  6  4 10  0 11  9 12  5  3  7  1  8
   4  8  2  9  3  7  5 11  1 12 10  0  6
...
a(12) = 4*(A071607(12) - A123565(25)) + 11240. - _Jim White_, Jul 22 2021
a(14) = 4*(A071607(14) - A123565(29)) + 91176. - _Jim White_, Jul 24 2021
a(15) = 4*(A071607(15) - A123565(31)) + 334800. - _Jim White_, Aug 03 2021
		

Crossrefs

Cf. A071607, A123565 (cyclic), A338620, A343868.

Programs

  • PARI
    \\ See Links

Formula

a(n) >= 4*(A071607(n) - A123565(2*n+1)).

Extensions

a(12)-a(15) from Jim White, Aug 03 2021

A328873 Maximal size of a set of pairwise mutually orthogonal diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 2, 2, 1, 4, 6, 6
Offset: 1

Views

Author

Eduard I. Vatutin, Oct 29 2019

Keywords

Comments

From Andrew Howroyd, Nov 08 2019: (Start)
A diagonal Latin square of order n is an n X n array with every integer from 0 to n-1 in every row, every column, and both main diagonals.
Of course if even one example exists, then a(n) >= 1.
A274806 gives the number of diagonal Latin squares and A274806(6) is nonzero. This suggests that although it is not possible to have a pair of orthogonal diagonal Latin squares, a(6) should be 1 here. (End)
a(1) = 1 because there is only one (trivial) diagonal Latin square of order 1. It is orthogonal to itself, so if we allow the consideration of multiple copies of the same diagonal Latin square, we get a(1) = infinity instead.
From Eduard I. Vatutin, Mar 27 2021: (Start)
a(n) <= A287695(n) + 1.
a(p) >= A123565(p) = p-3 for all odd prime p due to existence of clique from cyclic MODLS of order p with at least A123565(p) items. It seems that for some orders p clique from cyclic MODLS can be extended by adding none cyclic DLS that are orthogonal to all cyclic DLS. (End)
a(n) <= A001438(n). - Max Alekseyev, Nov 08 2019
a(10) >= 2; a(11) >= 8; a(12) >= 4; a(13) >= 10; a(14) >= 2; a(15) >= 4. - Natalia Makarova, Sep 03 2020; updated May 30 2021
a(16) >= 14, a(17) >= 14, a(18) >= 2, a(19) >= 16, a(20) >= 2. - Natalia Makarova, Jan 08 2021

Examples

			Orthogonal pair of Diagonal Latin squares of order 18:
   1  5 15 16 17 18  2 14  4 13  3  7 12 10  8  6 11  9
   8  2  6 15 16 17 18  1  5 14  4 13 11  9  7 12 10  3
  14  9  3  7 15 16 17  2  6  1  5 12 10  8 13 11  4 18
  13  1 10  4  8 15 16  3  7  2  6 11  9 14 12  5 18 17
  12 14  2 11  5  9 15  4  8  3  7 10  1 13  6 18 17 16
  11 13  1  3 12  6 10  5  9  4  8  2 14  7 18 17 16 15
   3 12 14  2  4 13  7  6 10  5  9  1  8 18 17 16 15 11
   9 10 11 12 13 14  1 15 16 17 18  8  7  6  5  4  3  2
   6  7  8  9 10 11 12 18 17 16 15  5  4  3  2  1 14 13
   5  6  7  8  9 10 11 16 15 18 17  4  3  2  1 14 13 12
   7  8  9 10 11 12 13 17 18 15 16  6  5  4  3  2  1 14
   4 15 16 17 18  1  8 13  3 12  2 14  6 11  9  7  5 10
  15 16 17 18 14  7  9 12  2 11  1  3 13  5 10  8  6  4
  16 17 18 13  6  8  3 11  1 10 14 15  2 12  4  9  7  5
  17 18 12  5  7  2  4 10 14  9 13 16 15  1 11  3  8  6
  18 11  4  6  1  3  5  9 13  8 12 17 16 15 14 10  2  7
  10  3  5 14  2  4  6  8 12  7 11 18 17 16 15 13  9  1
   2  4 13  1  3  5 14  7 11  6 10  9 18 17 16 15 12  8
and
   1  8 14 13 12 11  3  9  6  5  7  4 15 16 17 18 10  2
   5  2  9  1 14 13 12 10  7  6  8 15 16 17 18 11  3  4
  15  6  3 10  2  1 14 11  8  7  9 16 17 18 12  4  5 13
  16 15  7  4 11  3  2 12  9  8 10 17 18 13  5  6 14  1
  17 16 15  8  5 12  4 13 10  9 11 18 14  6  7  1  2  3
  18 17 16 15  9  6 13 14 11 10 12  1  7  8  2  3  4  5
   2 18 17 16 15 10  7  1 12 11 13  8  9  3  4  5  6 14
  14  1  2  3  4  5  6 15 16 17 18 13 12 11 10  9  8  7
   4  5  6  7  8  9 10 17 18 15 16  3  2  1 14 13 12 11
  13 14  1  2  3  4  5 18 17 16 15 12 11 10  9  8  7  6
   3  4  5  6  7  8  9 16 15 18 17  2  1 14 13 12 11 10
   7 13 12 11 10  2  1  8  5  4  6 14  3 15 16 17 18  9
  12 11 10  9  1 14  8  7  4  3  5  6 13  2 15 16 17 18
  10  9  8 14 13  7 18  6  3  2  4 11  5 12  1 15 16 17
   8  7 13 12  6 18 17  5  2  1  3  9 10  4 11 14 15 16
   6 12 11  5 18 17 16  4  1 14  2  7  8  9  3 10 13 15
  11 10  4 18 17 16 15  3 14 13  1  5  6  7  8  2  9 12
   9  3 18 17 16 15 11  2 13 12 14 10  4  5  6  7  1  8
so a(18) >= 2.
		

Crossrefs

Extensions

a(6) corrected by Max Alekseyev and Andrew Howroyd, Nov 08 2019
a(9) added by Eduard I. Vatutin, Feb 02 2021

A338620 Number of pandiagonal Latin squares of order 2n+1 with the first row in ascending order.

Original entry on oeis.org

1, 0, 2, 4, 0, 8, 12386, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Nov 04 2020

Keywords

Comments

A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.
For orders n = 5, 7 and 11 all pandiagonal Latin squares are cyclic, so a(n) = A123565(2n+1) for n < 6. For n=6 (order 13), this is not true and there are 12386 inequivalent squares; of these 10 are cyclic (in all directions) and 1560 are semi-cyclic (A343867).
Pandiagonal Latin squares exist only for odd orders not divisible by 3. This is because the positions of each symbol are a solution to the toroidal n-queens problem which only has solutions for these sizes. - Andrew Howroyd, May 26 2021

Examples

			Example of a cyclic pandiagonal Latin square of order 5:
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
Example of a cyclic pandiagonal Latin square of order 7:
  0 1 2 3 4 5 6
  2 3 4 5 6 0 1
  4 5 6 0 1 2 3
  6 0 1 2 3 4 5
  1 2 3 4 5 6 0
  3 4 5 6 0 1 2
  5 6 0 1 2 3 4
Example of a cyclic pandiagonal Latin square of order 11:
   0  1  2  3  4  5  6  7  8  9 10
   2  3  4  5  6  7  8  9 10  0  1
   4  5  6  7  8  9 10  0  1  2  3
   6  7  8  9 10  0  1  2  3  4  5
   8  9 10  0  1  2  3  4  5  6  7
  10  0  1  2  3  4  5  6  7  8  9
   1  2  3  4  5  6  7  8  9 10  0
   3  4  5  6  7  8  9 10  0  1  2
   5  6  7  8  9 10  0  1  2  3  4
   7  8  9 10  0  1  2  3  4  5  6
   9 10  0  1  2  3  4  5  6  7  8
For order 13 there is a square
   7  1  0  3  6  5 12  2  8  9 10 11  4
   2  3  4 10  0  7  6  9 12 11  5  8  1
   4 11  1  7  8  9 10  3  6  0 12  2  5
   6  5  8 11 10  4  7  0  1  2  3  9 12
   8  9  2  5 12 11  1  4  3 10  0  6  7
   3  6 12  0  1  2  8 11  5  4  7 10  9
  10  0  3  2  9 12  5  6  7  8  1  4 11
   1  7 10  4  3  6  9  8  2  5 11 12  0
  11  4  5  6  7  0  3 10  9 12  2  1  8
   5  8  7  1  4 10 11 12  0  6  9  3  2
  12  2  9  8 11  1  0  7 10  3  4  5  6
   9 10 11 12  5  8  2  1  4  7  6  0  3
   0 12  6  9  2  3  4  5 11  1  8  7 10
that is pandiagonal but not cyclic (Dabbaghian and Wu).
		

Crossrefs

Cf. A071607 (rows are cyclic), A123565, A342306, A343867 (semicyclic).

Formula

a(n) >= A123565(2n+1) + A343867(n). - Andrew Howroyd, May 26 2021
a(n) = A342306(n) / (2n+1)!. - Eduard I. Vatutin, Jun 13 2021

Extensions

Zero terms for even orders removed by Andrew Howroyd, May 26 2021
Showing 1-10 of 14 results. Next