cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A123565 a(n) is the number of positive integers k which are <= n and where k, k-1 and k+1 are each coprime to n.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 4, 0, 0, 0, 8, 0, 10, 0, 0, 0, 14, 0, 16, 0, 0, 0, 20, 0, 10, 0, 0, 0, 26, 0, 28, 0, 0, 0, 8, 0, 34, 0, 0, 0, 38, 0, 40, 0, 0, 0, 44, 0, 28, 0, 0, 0, 50, 0, 16, 0, 0, 0, 56, 0, 58, 0, 0, 0, 20, 0, 64, 0, 0, 0, 68, 0, 70, 0, 0, 0, 32, 0, 76, 0, 0, 0, 80, 0, 28, 0, 0, 0, 86, 0, 40, 0, 0
Offset: 1

Views

Author

Leroy Quet, Nov 12 2006

Keywords

Comments

a(p) = p-3 for any odd prime p. a(2n) = a(3n) = 0.
a(n) > 0 if and only if n is coprime to 6. - Chai Wah Wu, Aug 26 2016
Multiplicative by the Chinese remainder theorem. - Andrew Howroyd, Aug 07 2018
From Eduard I. Vatutin, Nov 03 2020: (Start)
a(n) is the number of cyclic diagonal Latin squares of order n with the first row in order. Every cyclic diagonal Latin square is a cyclic Latin square, so a(n) <= A000010(n). Every cyclic diagonal Latin square is pandiagonal, but the converse is not true. For example, for order n=13 there is a square
7 1 0 3 6 5 12 2 8 9 10 11 4
2 3 4 10 0 7 6 9 12 11 5 8 1
4 11 1 7 8 9 10 3 6 0 12 2 5
6 5 8 11 10 4 7 0 1 2 3 9 12
8 9 2 5 12 11 1 4 3 10 0 6 7
3 6 12 0 1 2 8 11 5 4 7 10 9
10 0 3 2 9 12 5 6 7 8 1 4 11
1 7 10 4 3 6 9 8 2 5 11 12 0
11 4 5 6 7 0 3 10 9 12 2 1 8
5 8 7 1 4 10 11 12 0 6 9 3 2
12 2 9 8 11 1 0 7 10 3 4 5 6
9 10 11 12 5 8 2 1 4 7 6 0 3
0 12 6 9 2 3 4 5 11 1 8 7 10
that is pandiagonal but not cyclic (Dabbaghian and Wu). (End)
Schemmel's totient function of order 3 (Schemmel, 1869; Sándor and Crstici, 2004). - Amiram Eldar, Nov 22 2020
a(p) is a lower bound for cardinality of clique of MODLS for all odd prime orders p: a(p) <= A328873(p). - Eduard I. Vatutin, Apr 02 2021
Also number of solutions for n-queens problem on toroidal chessboard (see A051906, A007705 or A370672), given by knight with (dx,dy) movement parameters starting from top left corner (more generally: from one cell fixed for all solutions). - Eduard I. Vatutin, Mar 13 2024

Examples

			The positive integers which are both coprime to 25 and are <= 25 are 1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24. Of these integers there are 10 integers k where (k-1) and (k+1) are also coprime to 25. These integers k are 2,3,7,8,12,13,17,18,22,23. So a(25) = 10.
Example of a cyclic diagonal Latin square of order 5:
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
Example of a cyclic diagonal Latin square of order 7:
  0 1 2 3 4 5 6
  2 3 4 5 6 0 1
  4 5 6 0 1 2 3
  6 0 1 2 3 4 5
  1 2 3 4 5 6 0
  3 4 5 6 0 1 2
  5 6 0 1 2 3 4
From _Eduard I. Vatutin_, Mar 13 2024: (Start)
Example of a(5)=2 solutions for n-queens problem on toroidal chessboard, given by knight with (+1,+2) and (+1,+3) movement parameters starting from top left corner:
.
+-----------+ +-----------+
| Q . . . . | | Q . . . . |
| . . Q . . | | . . . Q . |
| . . . . Q | | . Q . . . |
| . Q . . . | | . . . . Q |
| . . . Q . | | . . Q . . |
+-----------+ +-----------+
.
Example of a(7)=4 solutions for n-queens problem on toroidal chessboard, given by knight with (+1,+2), (+1,+3), (+1,+4), (+1,+5) movement parameters starting from top left corner:
.
+---------------+ +---------------+ +---------------+ +---------------+
| Q . . . . . . | | Q . . . . . . | | Q . . . . . . | | Q . . . . . . |
| . . Q . . . . | | . . . Q . . . | | . . . . Q . . | | . . . . . Q . |
| . . . . Q . . | | . . . . . . Q | | . Q . . . . . | | . . . Q . . . |
| . . . . . . Q | | . . Q . . . . | | . . . . . Q . | | . Q . . . . . |
| . Q . . . . . | | . . . . . Q . | | . . Q . . . . | | . . . . . . Q |
| . . . Q . . . | | . Q . . . . . | | . . . . . . Q | | . . . . Q . . |
| . . . . . Q . | | . . . . Q . . | | . . . Q . . . | | . . Q . . . . |
+---------------+ +---------------+ +---------------+ +---------------+
(End)
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 276.

Crossrefs

Programs

  • Maple
    f:= proc(n) local V,R;
      V:= map(igcd,[$1..n],n);
      R:= V[1..n-2] + V[2..n-1] + V[3..n];
      numboccur(3,R);
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Mar 15 2024
  • Mathematica
    f[n_] := Length[Select[Range[n],GCD[ #, n] == 1 && GCD[ # - 1, n] == 1 && GCD[ # + 1, n] == 1 &]];Table[f[n], {n, 100}] (* Ray Chandler, Nov 19 2006 *)
    Join[{1},Table[Count[Boole[Partition[CoprimeQ[Range[n],n],3,1]],{1,1,1}],{n,2,100}]] (* Harvey P. Dale, Apr 09 2017 *)
    f[2, e_] := 0; f[p_, e_] := (p - 3)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 22 2020 *)
  • PARI
    a(n)=if(gcd(n,6)>1, return(0)); sum(k=1,n,gcd(k^3-k,n)==1) \\ Charles R Greathouse IV, Aug 26 2016

Formula

Multiplicative with a(2^e) = 0 and a(p^e) = (p-3)*p^(e-1) for odd primes p. - Amiram Eldar, Nov 22 2020
a(2*n+1) = A338562(n) / (2*n+1)!. - Eduard I. Vatutin, Apr 02 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime} (1 - 3/p^2) = 0.125486... (A206256). - Amiram Eldar, Nov 18 2022
a(n) = A370672((n-1)/2) / n. - Eduard I. Vatutin, Mar 13 2024

Extensions

Extended by Ray Chandler, Nov 19 2006

A287648 Maximum number of diagonal transversals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 6, 27, 120, 333
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

From Eduard I. Vatutin, Oct 04 2020: (Start)
A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element.
A diagonal transversal is a transversal that includes exactly one element from the main diagonal and exactly one from the antidiagonal. For squares of odd orders, these elements can coincide at the intersection of the diagonals. (End)
A007016 is an upper bound for the number of diagonal transversals in a Latin square: A287647(n) <= a(n) <= A007016(n). - Eduard I. Vatutin, Jan 02 2020
a(11) >= 4828, a(12) >= 24901, a(13) >= 131106, a(14) >= 364596, a(15) >= 389318. - Natalia Makarova, Tomáš Brada, Harry White, Oct 04 2020
a(16) >= 32172800, a(18) >= 280308432. - Natalia Makarova, Tomáš Brada, Dec 25 2020
a(12) >= 28496. - Natalia Makarova, Harry White, Jan 23 2021
a(14) >= 380718, a(20) >= 90010806304, a(21) >= 51162162017, a(22) >= 3227747329246. The number of D-transversals for orders 20 - 22 was calculated by a volunteer. - Natalia Makarova, Tomáš Brada, Harry White, Mar 17 2021
All cyclic diagonal Latin squares (see A338562) are diagonal Latin squares, so A342997((n-1)/2) <= a(n). - Eduard I. Vatutin, Apr 26 2021
a(14) >= 383578, a(15) >= 398974. - Natalia Makarova, Tomáš Brada, Jan 13 2022
a(10) >= 890, a(12) >= 30192, a(14) >= 490218, a(15) >= 4620434, a(17) >= 204995269, a(18) >= 281593874, a(19) >= 11254190082. - Eduard I. Vatutin, Jul 22 2020, updated Mar 01 2025
For most orders n, at least one diagonal Latin square with the maximal number of diagonal transversals has an orthogonal mate and a(n) = A360220(n). Known exceptions: n=6 and n=10. - Eduard I. Vatutin, Feb 17 2023

Examples

			For example, the diagonal Latin square
  0 1 2 3
  3 2 1 0
  1 0 3 2
  2 3 0 1
has 4 diagonal transversals:
  0 . . .    . 1 . .    . . 2 .    . . . 3
  . . 1 .    . . . 0    3 . . .    . 2 . .
  . . . 2    . . 3 .    . 0 . .    1 . . .
  . 3 . .    2 . . .    . . . 1    . . 0 .
In addition there are 4 other transversals that are not diagonal transversals and are therefore not included here.
From _Natalia Makarova_, Oct 04 2020: (Start)
The following DLS of order 14 has 364596 diagonal transversals:
   0  7  6 11  9  3  4  5  2 12 13  8 10  1
   6  1 11  5 10 12  2  3  9  7  4 13  0  8
   5 11  2 12  8  1  7 10  0  6  9  3 13  4
  13  6  5  3  1 10  9 12  7  0  2  4  8 11
  12  3 10  1  4 13  8  6 11  5  0  7  2  9
  10 12  1  8  2  5 11 13  4  3  6  0  9  7
   9  2  7  0  5 11  6  8 13  4  1 10  3 12
   4 13  3  9  6  0 10  7  1  8 12  2 11  5
   2  4  9 10 11  6  1  0  8 13  7 12  5  3
   1 10  8 13 12  2  5  4  3  9 11  6  7  0
   3  5 12  7 13  8  0  1  6 11 10  9  4  2
   8  0 13  4  7  9  3  2 12 10  5 11  1  6
   7  9  0  6  3  4 13 11  5  2  8  1 12 10
  11  8  4  2  0  7 12  9 10  1  3  5  6 13
(End)
		

References

  • J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, and W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics. 1992. Vol. 139. pp. 43-49.

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Dec 08 2020

A287647 Minimum number of diagonal transversals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 1, 2, 0, 0, 0
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

A007016 is an upper bound for the number of diagonal transversals in a Latin square: a(n) <= A287648(n) <= A007016(n). - Eduard I. Vatutin, Jan 02 2020
From Eduard I. Vatutin, Apr 26 2021: (Start)
A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element.
A diagonal transversal is a transversal that includes exactly one element from the main diagonal and exactly one from the antidiagonal. For squares of odd orders, these elements can coincide at the intersection of the diagonals.
All cyclic diagonal Latin squares (see A338562) are diagonal Latin squares, so a(n) <= A342998((n-1)/2). (End)
a(10) <= 3, a(11) <= 43, a(12) = 0, a(13) <= 4756, a(14) <= 1446, a(15) <= 15510, a(16) <= 898988, a(17) <= 12058840, a(18) <= 82577875, a(19) <= 592174879, a(20) <= 4488686380. - Eduard I. Vatutin, Sep 26 2021, updated Jan 20 2025

Examples

			From _Eduard I. Vatutin_, Apr 26 2021: (Start)
For example, the diagonal Latin square
  0 1 2 3
  3 2 1 0
  1 0 3 2
  2 3 0 1
has 4 diagonal transversals:
  0 . . .    . 1 . .    . . 2 .    . . . 3
  . . 1 .    . . . 0    3 . . .    . 2 . .
  . . . 2    . . 3 .    . 0 . .    1 . . .
  . 3 . .    2 . . .    . . . 1    . . 0 .
In addition there are 4 other transversals that are not diagonal transversals and are therefore not included here. (End)
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Sep 20 2020

A342990 Number of horizontally or vertically semicyclic diagonal Latin squares of order 2n+1.

Original entry on oeis.org

1, 0, 240, 20160, 0, 319334400, 2167003238400, 0, 2943669154922496000, 5253122016055001088000, 0, 144827547726179682893168640000, 1214667347283206181421056000000000, 0, 184737047979495031539522261089255424000000, 3555700708206908663181998415125686517760000000, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Jan 27 2022

Keywords

Comments

Horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). Vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i). Cyclic diagonal Latin squares (see A338562) fall under the definition of vertically and horizontally semicyclic diagonal Latin squares simultaneously, in this type of squares each row r(i) is obtained from the previous one r(i-1) using cyclic shift by some value d. Definition from A343867 includes this type of squares but not only it.

Examples

			Example of cyclic diagonal Latin square of order 13:
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=14 ==  1 (mod 13))
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=16 ==  3 (mod 13))
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=18 ==  5 (mod 13))
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=20 ==  7 (mod 13))
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=22 ==  9 (mod 13))
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=24 == 11 (mod 13))
Example of horizontally semicyclic diagonal Latin square of order 13:
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
		

Crossrefs

Formula

a(n) = A071607(n) * (2*n+1)!.
a(n) = A007705(n) * (2n)!. - Eduard I. Vatutin, Mar 15 2024

A341585 Number of main classes of cyclic diagonal Latin squares of order 2n+1.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 3, 0, 4, 4, 0, 5, 1, 0, 7, 7, 0, 1, 9, 0, 10, 10, 0, 11, 1, 0, 13, 2, 0, 14, 15, 0, 3, 16, 0, 17, 18, 0, 4, 19, 0, 20, 4, 0, 22, 5, 0, 4, 24, 0, 25, 25, 0, 26, 27, 0, 28, 5, 0, 7, 2, 0, 1, 31, 0, 32, 8, 0, 34, 34, 0, 10, 7, 0, 37, 37, 0, 7, 39, 0, 10
Offset: 0

Views

Author

Eduard I. Vatutin, Feb 15 2021

Keywords

Comments

There are no cyclic diagonal Latin squares of even order.
All cyclic diagonal Latin squares are pandiagonal. Conversely, all pandiagonal Latin squares are cyclic for orders 5, 7 and 11.
From Andrew Howroyd, May 01 2021: (Start)
Depending on exactly which Latin squares constitute a main class, slightly different sequences are possible. Another variation is given in A343866.
In this sequence equivalence allows for the permutation of symbols, the transpose of rows with columns, and any permutation of rows and columns that preserves the cyclic and diagonal properties. This permutation must transform every cyclic diagonal Latin square into another, but does not necessarily transform an arbitrary diagonal Latin square that is not cyclic into another diagonal Latin square.
The row (or column) permutations that satisfy this requirement form a group and are those where every k-th row (or column) is taken cyclically where k is any number that is congruent to 1 or -1 modulo every prime divisor of the order of the Latin square. (End)

Examples

			For n=0 there is only 1 Latin square of order 1, so a(0)=1.
For n=2 there is one main class with canonical form (CF) of cyclic diagonal Latin squares of order 2n+1=5:
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
so a(2)=1.
For n=3 there is one main class of order 7 with CF:
  0 1 2 3 4 5 6
  2 3 4 5 6 0 1
  4 5 6 0 1 2 3
  6 0 1 2 3 4 5
  1 2 3 4 5 6 0
  3 4 5 6 0 1 2
  5 6 0 1 2 3 4
so a(3)=1.
a(12) = 1. There are A123565(25) = 10 cyclic diagonal Latin squares whose first row is in ascending order. The 10 row permutations constructed by selecting every k-th row cyclically where k is one of 1, 4, 6, 9, 11, 14, 16, 19, 21, 24 (numbers congruent to 1 or -1 modulo 5) transforms each of these between each other so there is only a single class. - _Andrew Howroyd_, May 02 2021
		

Crossrefs

Programs

  • PARI
    G(n)={my(f=factor(n)[,1]); select((d->for(i=1, #f, if((d-1)%f[i]&&(d+1)%f[i], return(0)));1), [1..n])}
    iscanon(n,k,g) = k <= vecmin(g*k%n) && k <= vecmin(g*lift(1/Mod(k,n))%n)
    a(n)={if(n==0, 1, my(m=2*n+1, g=G(m)); sum(k=1, m-1, gcd(m,k)==1 && gcd(m,k-1)==1 && gcd(m,k+1)==1 && iscanon(m, k, g)))} \\ Andrew Howroyd, Apr 30 2021

Formula

a((p-1)/2) = A343866((p-1)/2) for odd prime p. - Andrew Howroyd, May 02 2021

Extensions

Offset corrected and terms a(12) and beyond from Andrew Howroyd, Apr 30 2021

A342998 Minimum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 5, 27, 0, 4523, 128818, 0, 204330233, 11232045257
Offset: 0

Views

Author

Eduard I. Vatutin, Apr 02 2021

Keywords

Comments

A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places (see A338562, A123565 and A341585).
Cyclic diagonal Latin squares do not exist for even orders.
a(n) <= A342997(n).
All cyclic diagonal Latin squares are diagonal Latin squares, so A287647(n) <= a((n-1)/2).

Examples

			For n=2 one of best cyclic diagonal Latin squares of order 5
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
has a(2)=5 diagonal transversals:
  0 . . . .   . 1 . . .   . . 2 . .   . . . 3 .   . . . . 4
  . . 4 . .   . . . 0 .   . . . . 1   2 . . . .   . 3 . . .
  . . . . 3   4 . . . .   . 0 . . .   . . 1 . .   . . . 2 .
  . 2 . . .   . . 3 . .   . . . 4 .   . . . . 0   1 . . . .
  . . . 1 .   . . . . 2   3 . . . .   . 4 . . .   . . 0 . .
		

Crossrefs

A342306 Number of pandiagonal Latin squares of order 2n+1.

Original entry on oeis.org

1, 0, 240, 20160, 0, 319334400, 77127879628800, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Mar 08 2021

Keywords

Comments

A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.
For orders 5, 7 and 11 all pandiagonal Latin squares are cyclic, so a(n) = A338562(n) for n < 6. For n=6 (order 13) this is not true (from Dabbaghian and Wu).
Pandiagonal Latin squares exist only for odd orders not divisible by 3. - Andrew Howroyd, May 26 2021

Examples

			Example of a cyclic pandiagonal Latin square of order 5:
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
Example of a cyclic pandiagonal Latin square of order 7:
  0 1 2 3 4 5 6
  2 3 4 5 6 0 1
  4 5 6 0 1 2 3
  6 0 1 2 3 4 5
  1 2 3 4 5 6 0
  3 4 5 6 0 1 2
  5 6 0 1 2 3 4
Example of a cyclic pandiagonal Latin square of order 11:
   0  1  2  3  4  5  6  7  8  9 10
   2  3  4  5  6  7  8  9 10  0  1
   4  5  6  7  8  9 10  0  1  2  3
   6  7  8  9 10  0  1  2  3  4  5
   8  9 10  0  1  2  3  4  5  6  7
  10  0  1  2  3  4  5  6  7  8  9
   1  2  3  4  5  6  7  8  9 10  0
   3  4  5  6  7  8  9 10  0  1  2
   5  6  7  8  9 10  0  1  2  3  4
   7  8  9 10  0  1  2  3  4  5  6
   9 10  0  1  2  3  4  5  6  7  8
For order 13 there is a square
   7  1  0  3  6  5 12  2  8  9 10 11  4
   2  3  4 10  0  7  6  9 12 11  5  8  1
   4 11  1  7  8  9 10  3  6  0 12  2  5
   6  5  8 11 10  4  7  0  1  2  3  9 12
   8  9  2  5 12 11  1  4  3 10  0  6  7
   3  6 12  0  1  2  8 11  5  4  7 10  9
  10  0  3  2  9 12  5  6  7  8  1  4 11
   1  7 10  4  3  6  9  8  2  5 11 12  0
  11  4  5  6  7  0  3 10  9 12  2  1  8
   5  8  7  1  4 10 11 12  0  6  9  3  2
  12  2  9  8 11  1  0  7 10  3  4  5  6
   9 10 11 12  5  8  2  1  4  7  6  0  3
   0 12  6  9  2  3  4  5 11  1  8  7 10
that is pandiagonal but not cyclic (Dabbaghian and Wu).
		

Crossrefs

Formula

a(n) = A338620(n) * (2*n+1)!.

Extensions

Zero terms for even orders removed by Andrew Howroyd, May 26 2021

A342997 Maximum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 5, 27, 0, 4665, 131106, 0, 204995269, 11254190082
Offset: 0

Views

Author

Eduard I. Vatutin, Apr 02 2021

Keywords

Comments

A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places (see A338562, A123565 and A341585).
Cyclic diagonal Latin squares do not exist for even n.
All cyclic diagonal Latin squares are diagonal Latin squares, so a((n-1)/2) <= A287648(n).
All diagonal transversals are transversals, so a(n) <= A006717(n).
A342998 <= a(n).

Examples

			For n=2 one of the best cyclic diagonal Latin squares of order 5
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
has a(2)=5 diagonal transversals:
  0 . . . .   . 1 . . .   . . 2 . .   . . . 3 .   . . . . 4
  . . 4 . .   . . . 0 .   . . . . 1   2 . . . .   . 3 . . .
  . . . . 3   4 . . . .   . 0 . . .   . . 1 . .   . . . 2 .
  . 2 . . .   . . 3 . .   . . . 4 .   . . . . 0   1 . . . .
  . . . 1 .   . . . . 2   3 . . . .   . 4 . . .   . . 0 . .
		

Crossrefs

A372922 Number of diagonal Latin squares of order 2n+1 that are isomorphic to cyclic Latin squares by row and column permutations.

Original entry on oeis.org

1, 0, 480, 161280, 2229534720, 45984153600000, 3271798279766016000
Offset: 0

Views

Author

Eduard I. Vatutin, May 16 2024

Keywords

Comments

The Latin squares considered here are diagonal Latin squares that are isomorphic to cyclic Latin squares. They are can be obtained from cyclic Latin squares (see A338522) by diagonalization (getting a corresponding pair of transversals and placing them on the diagonals, see article). These Latin squares have some interesting properties, for example, there are a large number of diagonal transversals.

Examples

			The cyclic Latin square of order 7
.
  0 1 2 3 4 5 6
  1 2 3 4 5 6 0
  2 3 4 5 6 0 1
  3 4 5 6 0 1 2
  4 5 6 0 1 2 3
  5 6 0 1 2 3 4
  6 0 1 2 3 4 5
.
has a pair of symmetrically placed transversals T1 = (0, 2, 4, 6, 1, 3, 5) and T2 = (0, 5, 3, 1, 6, 4, 2), after permutting rown and columns transversal T1 placed to the main diagonal with getting single diagonal Latin square
.
  2 5 0 3 4 6 1
  0 3 5 1 2 4 6
  1 4 6 2 3 5 0
  6 2 4 0 1 3 5
  3 6 1 4 5 0 2
  4 0 2 5 6 1 3
  5 1 3 6 0 2 4
.
then after permuting rows and columns transversal T2 placed to the second diagonal with getting diagonal Latin square
.
  2 5 0 3 6 1 4
  0 3 5 1 4 6 2
  1 4 6 2 5 0 3
  6 2 4 0 3 5 1
  4 0 2 5 1 3 6
  5 1 3 6 2 4 0
  3 6 1 4 0 2 5
.
that can be canonized to the following diagonal Latin square:
.
  0 1 2 3 4 5 6
  2 3 1 5 6 4 0
  5 6 4 0 1 2 3
  4 0 6 2 3 1 5
  6 2 0 1 5 3 4
  1 5 3 4 0 6 2
  3 4 5 6 2 0 1
.
Cyclic Latin square of order 11
.
  0 1 2 3 4 5 6 7 8 9 10
  1 2 3 4 5 6 7 8 9 10 0
  2 3 4 5 6 7 8 9 10 0 1
  3 4 5 6 7 8 9 10 0 1 2
  4 5 6 7 8 9 10 0 1 2 3
  5 6 7 8 9 10 0 1 2 3 4
  6 7 8 9 10 0 1 2 3 4 5
  7 8 9 10 0 1 2 3 4 5 6
  8 9 10 0 1 2 3 4 5 6 7
  9 10 0 1 2 3 4 5 6 7 8
  10 0 1 2 3 4 5 6 7 8 9
.
can be diagonalized to set of diagonal Latin squares:
.
  0 1 2 3 4 5 6 7 8 9 10   0 1 2 3 4 5 6 7 8 9 10   0 1 2 3 4 5 6 7 8 9 10
  1 2 3 4 5 10 8 9 0 6 7   1 2 3 4 6 7 8 9 10 0 5   1 2 3 4 5 10 9 0 7 8 6
  3 4 5 10 7 9 1 8 2 0 6   8 10 5 7 9 3 0 4 1 6 2   3 4 5 10 6 9 7 2 1 0 8
  4 5 10 7 9 6 2 0 3 1 8   4 6 8 10 5 1 7 2 9 3 0   10 6 9 8 7 0 2 5 4 3 1
  10 7 9 6 8 0 4 2 5 3 1   9 0 1 2 3 10 4 5 6 7 8   9 8 7 0 1 2 4 6 10 5 3
  7 9 6 8 0 1 5 3 10 4 2   7 9 0 1 2 8 3 10 4 5 6   5 10 6 9 8 7 1 4 3 2 0
  8 0 1 2 3 4 9 10 6 7 5   6 8 10 5 7 2 9 3 0 4 1   7 0 1 2 3 4 10 8 9 6 5
  2 3 4 5 10 7 0 6 1 8 9   10 5 7 9 0 4 1 6 2 8 3   4 5 10 6 9 8 0 3 2 1 7
  5 10 7 9 6 8 3 1 4 2 0   3 4 6 8 10 0 5 1 7 2 9   8 7 0 1 2 3 5 9 6 10 4
  6 8 0 1 2 3 7 5 9 10 4   2 3 4 6 8 9 10 0 5 1 7   6 9 8 7 0 1 3 10 5 4 2
  9 6 8 0 1 2 10 4 7 5 3   5 7 9 0 1 6 2 8 3 10 4   2 3 4 5 10 6 8 1 0 7 9 ...
.
(totally 81 main classes of diagonal Latin squares).
		

Crossrefs

Formula

a(n) = A372923(n) * (2n+1)!. - Eduard I. Vatutin, Sep 08 2024

A348212 Number of transversals in a cyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 15, 133, 0, 37851, 1030367, 0, 1606008513, 87656896891, 0, 452794797220965, 41609568918940625
Offset: 1

Views

Author

Eduard I. Vatutin, Oct 07 2021

Keywords

Comments

All cyclic diagonal Latin squares of order n have same number of transversals. A similar statement for diagonal transversals is not true (see A342998 and A342997).
All broken diagonals and antidiagonals of cyclic Latin squares are transversals, so a(n) >= 2*n for all n > 1 for which cyclic diagonal Latin squares exist. - Eduard I. Vatutin, Mar 22 2022
All cyclic diagonal Latin squares are diagonal Latin squares, so A287645(2n+1) <= a(n) <= A287644(2n+1) for all orders in which cyclic diagonal Latin squares exist. - Eduard I. Vatutin, Mar 23 2022

Examples

			A cyclic diagonal Latin square of order 5
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
has a(3)=15 transversals:
  0 . . . .   0 . . . .   . 1 . . .         . . . . 4
  . 3 . . .   . . . . 1   2 . . . .         . 3 . . .
  . . 1 . .   . . . 2 .   . . . . 3         . . . 2 .
  . . . 4 .   . . 3 . .   . . . 4 .         1 . . . .
  . . . . 2   . 4 . . .   . . 0 . .   ...   . . 0 . .
		

Crossrefs

Formula

a(n) = A006717(n) * A011655(n+1).
Showing 1-10 of 18 results. Next