A338562
Number of cyclic diagonal Latin squares of order 2n+1.
Original entry on oeis.org
1, 0, 240, 20160, 0, 319334400, 62270208000, 0, 4979623993344000, 1946321606541312000, 0, 517040334777699532800000, 155112100433309859840000000, 0, 229885811837232250818134016000000, 230239482316981838896315760640000000, 0, 82665183731089159437333210700185600000000
Offset: 0
For n=3 there are 6 cyclic Latin squares of order 7 with the first row in ascending order, only 4 of them are diagonal:
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
2 3 4 5 6 0 1 3 4 5 6 0 1 2 4 5 6 0 1 2 3 5 6 0 1 2 3 4
4 5 6 0 1 2 3 6 0 1 2 3 4 5 1 2 3 4 5 6 0 3 4 5 6 0 1 2
6 0 1 2 3 4 5 2 3 4 5 6 0 1 5 6 0 1 2 3 4 1 2 3 4 5 6 0
1 2 3 4 5 6 0 5 6 0 1 2 3 4 2 3 4 5 6 0 1 6 0 1 2 3 4 5
3 4 5 6 0 1 2 1 2 3 4 5 6 0 6 0 1 2 3 4 5 4 5 6 0 1 2 3
5 6 0 1 2 3 4 4 5 6 0 1 2 3 3 4 5 6 0 1 2 2 3 4 5 6 0 1
and 4*7! = 20160 cyclic diagonal Latin squares.
- Eduard I. Vatutin, Enumerating cyclic Latin squares and Euler totient function calculating using them, High-performance computing systems and technologies, 2020, Vol. 4, No. 2, pp. 40-48. (in Russian)
- Eduard I. Vatutin, Numerical formula between number of cyclic diagonal Latin squares and number of toroidal n-queens problem solutions getting by knight movement (in Russian).
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
-
a(n)={my(m=2*n+1); m!*if(gcd(m, 6)==1, sum(k=1, m, gcd(k^3-k, m)==1))} \\ Andrew Howroyd, Apr 30 2021
A372922
Number of diagonal Latin squares of order 2n+1 that are isomorphic to cyclic Latin squares by row and column permutations.
Original entry on oeis.org
1, 0, 480, 161280, 2229534720, 45984153600000, 3271798279766016000
Offset: 0
The cyclic Latin square of order 7
.
0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 3 4 5 6 0 1
3 4 5 6 0 1 2
4 5 6 0 1 2 3
5 6 0 1 2 3 4
6 0 1 2 3 4 5
.
has a pair of symmetrically placed transversals T1 = (0, 2, 4, 6, 1, 3, 5) and T2 = (0, 5, 3, 1, 6, 4, 2), after permutting rown and columns transversal T1 placed to the main diagonal with getting single diagonal Latin square
.
2 5 0 3 4 6 1
0 3 5 1 2 4 6
1 4 6 2 3 5 0
6 2 4 0 1 3 5
3 6 1 4 5 0 2
4 0 2 5 6 1 3
5 1 3 6 0 2 4
.
then after permuting rows and columns transversal T2 placed to the second diagonal with getting diagonal Latin square
.
2 5 0 3 6 1 4
0 3 5 1 4 6 2
1 4 6 2 5 0 3
6 2 4 0 3 5 1
4 0 2 5 1 3 6
5 1 3 6 2 4 0
3 6 1 4 0 2 5
.
that can be canonized to the following diagonal Latin square:
.
0 1 2 3 4 5 6
2 3 1 5 6 4 0
5 6 4 0 1 2 3
4 0 6 2 3 1 5
6 2 0 1 5 3 4
1 5 3 4 0 6 2
3 4 5 6 2 0 1
.
Cyclic Latin square of order 11
.
0 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 0
2 3 4 5 6 7 8 9 10 0 1
3 4 5 6 7 8 9 10 0 1 2
4 5 6 7 8 9 10 0 1 2 3
5 6 7 8 9 10 0 1 2 3 4
6 7 8 9 10 0 1 2 3 4 5
7 8 9 10 0 1 2 3 4 5 6
8 9 10 0 1 2 3 4 5 6 7
9 10 0 1 2 3 4 5 6 7 8
10 0 1 2 3 4 5 6 7 8 9
.
can be diagonalized to set of diagonal Latin squares:
.
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 10 8 9 0 6 7 1 2 3 4 6 7 8 9 10 0 5 1 2 3 4 5 10 9 0 7 8 6
3 4 5 10 7 9 1 8 2 0 6 8 10 5 7 9 3 0 4 1 6 2 3 4 5 10 6 9 7 2 1 0 8
4 5 10 7 9 6 2 0 3 1 8 4 6 8 10 5 1 7 2 9 3 0 10 6 9 8 7 0 2 5 4 3 1
10 7 9 6 8 0 4 2 5 3 1 9 0 1 2 3 10 4 5 6 7 8 9 8 7 0 1 2 4 6 10 5 3
7 9 6 8 0 1 5 3 10 4 2 7 9 0 1 2 8 3 10 4 5 6 5 10 6 9 8 7 1 4 3 2 0
8 0 1 2 3 4 9 10 6 7 5 6 8 10 5 7 2 9 3 0 4 1 7 0 1 2 3 4 10 8 9 6 5
2 3 4 5 10 7 0 6 1 8 9 10 5 7 9 0 4 1 6 2 8 3 4 5 10 6 9 8 0 3 2 1 7
5 10 7 9 6 8 3 1 4 2 0 3 4 6 8 10 0 5 1 7 2 9 8 7 0 1 2 3 5 9 6 10 4
6 8 0 1 2 3 7 5 9 10 4 2 3 4 6 8 9 10 0 5 1 7 6 9 8 7 0 1 3 10 5 4 2
9 6 8 0 1 2 10 4 7 5 3 5 7 9 0 1 6 2 8 3 10 4 2 3 4 5 10 6 8 1 0 7 9 ...
.
(totally 81 main classes of diagonal Latin squares).
- Eduard I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Eduard I. Vatutin, About the different types of cyclic diagonal Latin squares (in Russian).
- E. Vatutin, A. Belyshev, N. Nikitina, M. Manzuk, A. Albertian, I. Kurochkin, A. Kripachev, and A. Pykhtin, Diagonalization and Canonization of Latin Squares, Lecture Notes in Computer Science, Vol. 14389, Springer, Cham., 2023. pp. 48-61.
- Index entries for sequences related to Latin squares and rectangles.
A372923
Number of diagonalized cyclic diagonal Latin squares of order 2n+1 with the first row in order.
Original entry on oeis.org
1, 0, 4, 32, 6144, 1152000, 45984153600000
Offset: 0
- Eduard I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Eduard I. Vatutin, About the different types of cyclic diagonal Latin squares (in Russian).
- E. Vatutin, A. Belyshev, N. Nikitina, M. Manzuk, A. Albertian, I. Kurochkin, A. Kripachev, and A. Pykhtin, Diagonalization and Canonization of Latin Squares, Lecture Notes in Computer Science, Vol. 14389, Springer, Cham., 2023. pp. 48-61.
- Index entries for sequences related to Latin squares and rectangles.
A375475
Number of main classes of diagonalized cyclic diagonal Latin squares of order 2n+1.
Original entry on oeis.org
1, 0, 1, 1, 7, 81, 2933
Offset: 0
- Eduard I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Eduard I. Vatutin, About the different types of cyclic diagonal Latin squares (in Russian).
- E. Vatutin, A. Belyshev, N. Nikitina, M. Manzuk, A. Albertian, I. Kurochkin, A. Kripachev, and A. Pykhtin, Diagonalization and Canonization of Latin Squares, Lecture Notes in Computer Science, Vol. 14389, Springer, Cham., 2023. pp. 48-61.
- Proving lists.
- Index entries for sequences related to Latin squares and rectangles.
A383368
Number of intercalates in pine Latin squares of order 2n.
Original entry on oeis.org
1, 12, 27, 80, 125, 252, 343, 576, 729, 1100, 1331, 1872, 2197, 2940, 3375, 4352, 4913, 6156, 6859, 8400, 9261, 11132, 12167, 14400, 15625
Offset: 1
For order N=8 pine Latin square
0 1 2 3 4 5 6 7
1 2 3 0 7 4 5 6
2 3 0 1 6 7 4 5
3 0 1 2 5 6 7 4
4 5 6 7 0 1 2 3
5 6 7 4 3 0 1 2
6 7 4 5 2 3 0 1
7 4 5 6 1 2 3 0
have 80 intercalates.
.
For order N=10 pine Latin square
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 9 5 6 7 8
2 3 4 0 1 8 9 5 6 7
3 4 0 1 2 7 8 9 5 6
4 0 1 2 3 6 7 8 9 5
5 6 7 8 9 0 1 2 3 4
6 7 8 9 5 4 0 1 2 3
7 8 9 5 6 3 4 0 1 2
8 9 5 6 7 2 3 4 0 1
9 5 6 7 8 1 2 3 4 0
have 125 intercalates.
.
For order N=12 pine Latin square
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 0 11 6 7 8 9 10
2 3 4 5 0 1 10 11 6 7 8 9
3 4 5 0 1 2 9 10 11 6 7 8
4 5 0 1 2 3 8 9 10 11 6 7
5 0 1 2 3 4 7 8 9 10 11 6
6 7 8 9 10 11 0 1 2 3 4 5
7 8 9 10 11 6 5 0 1 2 3 4
8 9 10 11 6 7 4 5 0 1 2 3
9 10 11 6 7 8 3 4 5 0 1 2
10 11 6 7 8 9 2 3 4 5 0 1
11 6 7 8 9 10 1 2 3 4 5 0
have 252 intercalates.
A383570
Number of transversals in pine Latin squares of order 4n.
Original entry on oeis.org
8, 384, 76032, 62881792
Offset: 1
For order N=8 pine Latin square
0 1 2 3 4 5 6 7
1 2 3 0 7 4 5 6
2 3 0 1 6 7 4 5
3 0 1 2 5 6 7 4
4 5 6 7 0 1 2 3
5 6 7 4 3 0 1 2
6 7 4 5 2 3 0 1
7 4 5 6 1 2 3 0
has 384 transversals.
.
For order N=10 pine Latin square
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 9 5 6 7 8
2 3 4 0 1 8 9 5 6 7
3 4 0 1 2 7 8 9 5 6
4 0 1 2 3 6 7 8 9 5
5 6 7 8 9 0 1 2 3 4
6 7 8 9 5 4 0 1 2 3
7 8 9 5 6 3 4 0 1 2
8 9 5 6 7 2 3 4 0 1
9 5 6 7 8 1 2 3 4 0
has no transversals.
.
For order N=12 pine Latin square
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 0 11 6 7 8 9 10
2 3 4 5 0 1 10 11 6 7 8 9
3 4 5 0 1 2 9 10 11 6 7 8
4 5 0 1 2 3 8 9 10 11 6 7
5 0 1 2 3 4 7 8 9 10 11 6
6 7 8 9 10 11 0 1 2 3 4 5
7 8 9 10 11 6 5 0 1 2 3 4
8 9 10 11 6 7 4 5 0 1 2 3
9 10 11 6 7 8 3 4 5 0 1 2
10 11 6 7 8 9 2 3 4 5 0 1
11 6 7 8 9 10 1 2 3 4 5 0
has 76032 transversals.
Showing 1-6 of 6 results.
Comments