cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123583 Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - T_n(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.

Original entry on oeis.org

0, 1, 0, -1, 0, 0, 4, 0, -4, 1, 0, -9, 0, 24, 0, -16, 0, 0, 16, 0, -80, 0, 128, 0, -64, 1, 0, -25, 0, 200, 0, -560, 0, 640, 0, -256, 0, 0, 36, 0, -420, 0, 1792, 0, -3456, 0, 3072, 0, -1024, 1, 0, -49, 0, 784, 0, -4704, 0, 13440, 0, -19712, 0, 14336, 0, -4096
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 12 2006

Keywords

Comments

All row sum are zero. Row sums of absolute values are in A114619. - Klaus Brockhaus, May 29 2009

Examples

			First few rows of the triangle are:
  0;
  1, 0,  -1;
  0, 0,   4, 0,   -4;
  1, 0,  -9, 0,   24, 0,  -16;
  0, 0,  16, 0,  -80, 0,  128, 0,   -64;
  1, 0, -25, 0,  200, 0, -560, 0,   640, 0, -256;
  0, 0,  36, 0, -420, 0, 1792, 0, -3456, 0, 3072, 0, -1024;
First few polynomials (p(n, x) = 1 - T_{n}(x)^2) are:
  p(0, x) = 0,
  p(1, x) = 1 -    x^2,
  p(2, x) = 0    4*x^2 -   4*x^4,
  p(3, x) = 1 -  9*x^2 +  24*x^4 -   16*x^6,
  p(4, x) = 0   16*x^2 -  80*x^4 +  128*x^6 -   64*x^8,
  p(5, x) = 1 - 25*x^2 + 200*x^4 -  560*x^6 +  640*x^8 -  256*x^10,
  p(6, x) = 0   36*x^2 - 420*x^4 + 1792*x^6 - 3456*x^8 + 3072*x^10 - 1024*x^12.
		

Crossrefs

Programs

  • Magma
    [0] cat &cat[ Coefficients(1-ChebyshevT(n)^2): n in [1..8] ];
    
  • Mathematica
    (* First program *)
    Table[CoefficientList[1 - ChebyshevT[n, x]^2, x], {n, 0, 10}]//Flatten
    (* Second program *)
    T[n_, k_]:= T[n, k]= SeriesCoefficient[(1 -ChebyshevT[2*n,x])/2, {x,0,k}];
    Table[T[n, k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Jul 02 2021 *)
  • PARI
    v=[]; for(n=0, 8, v=concat(v, vector(2*n+1, j, polcoeff(1-poltchebi(n)^2, j-1)))); v
    
  • Sage
    def T(n): return ( (1 - chebyshev_T(2*n, x))/2 ).full_simplify().coefficients(sparse=False)
    flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 02 2021

Formula

T(n, k) = coefficients of ( 1 - ChebyshevT(n, x)^2 ).
T(n, k) = coefficients of ( (1 - ChebyshevT(2*n, x))/2 ). - G. C. Greubel, Jul 02 2021

Extensions

Edited by N. J. A. Sloane, Mar 09 2008