A136667
Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - T_n(x)^2, where T_n(x) is the n-th Hermite polynomial of the Hochstadt kind (A137286) as related to the generalized Chebyshev in a Shabat way (A123583): p(x,n)=x*p(x,n-1)-p(x,n-2); q(x,n)=1-p(x,n)^2.
Original entry on oeis.org
0, 1, 0, -1, -3, 0, 4, 0, -1, 1, 0, -25, 0, 10, 0, -1, -63, 0, 144, 0, -97, 0, 18, 0, -1, 1, 0, -1089, 0, 924, 0, -262, 0, 28, 0, -1, -2303, 0, 8352, 0, -9489, 0, 3576, 0, -574, 0, 40, 0, -1, 1, 0, -77841, 0, 103230, 0, -49291, 0, 10548, 0, -1099, 0, 54, 0, -1, -147455, 0, 748800, 0, -1215585, 0, 699630, 0, -188043, 0
Offset: 1
The irregular triangle begins
{0},
{1, 0, -1},
{-3, 0, 4, 0, -1},
{1, 0, -25, 0, 10, 0, -1},
{-63, 0, 144, 0, -97, 0, 18, 0, -1},
{1, 0, -1089, 0, 924, 0, -262,0, 28, 0, -1},
{-2303, 0, 8352, 0, -9489, 0, 3576, 0, -574, 0, 40, 0, -1},
{1, 0, -77841, 0, 103230, 0, -49291, 0, 10548,0, -1099, 0, 54, 0, -1},
...
- Defined: page 8 and pages 42 - 43: Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986
- G. B. Shabat and I. A. Voevodskii, Drawing curves over number fields, The Grothendieck Festschift, vol. 3, Birkhäuser, 1990, pp. 199-22
-
P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; Q[x_, n_] := Q[x, n] = 1 - P[x, n]^2; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a = Join[{{0}}, Table[CoefficientList[Q[x, n], x], {n, 0, 10}]]; Flatten[a]
-
polx(n) = if (n == 0, 1, if (n == 1, x, x*polx(n - 1) - n*polx(n - 2)));
tabf(nn) = {for (n = 0, nn, pol = 1 - polx(n)^2; for (i = 0, 2*n, print1(polcoeff(pol, i), ", "); ); print(); ); } \\ Michel Marcus, Feb 26 2018
A156647
Square array T(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2) with T(n, 0) = n!, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, -3, 2, 1, -8, 144, 6, 1, -15, 2304, -97200, 24, 1, -24, 14400, -22579200, 914457600, 120, 1, -35, 57600, -857304000, 7517247897600, -119833267276800, 720, 1, -48, 176400, -13548902400, 3163657512960000, -85018329720343756800, 218719679433615360000, 5040
Offset: 0
Square array begins as:
1, 1, 1, ...;
1, -3, -8, ...;
2, 144, 2304, ...;
6, -97200, -22579200, ...;
24, 914457600, 7517247897600, ...;
120, -119833267276800, -85018329720343756800, ...;
Triangle begins as:
1;
1, 1;
1, -3, 2;
1, -8, 144, 6;
1, -15, 2304, -97200, 24;
1, -24, 14400, -22579200, 914457600, 120;
1, -35, 57600, -857304000, 7517247897600, -119833267276800, 720;
-
T:= func< n,k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
[T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 02 2021
-
T[n_, k_]= If[k==0, n!, Product[1 - ChebyshevT[j, k+1]^2, {j,n}]];
Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jul 02 2021 *)
-
def T(n,k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) )
flatten([[T(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 02 2021
A156645
Triangle T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 36, 1, 1, 1225, 1225, 1, 1, 41616, 1416100, 41616, 1, 1, 1413721, 1634261476, 1634261476, 1413721, 1, 1, 48024900, 1885939157025, 64069586905104, 1885939157025, 48024900, 1, 1, 1631432881, 2176372249076025, 2511659716192658889, 2511659716192658889, 2176372249076025, 1631432881, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 36, 1;
1, 1225, 1225, 1;
1, 41616, 1416100, 41616, 1;
1, 1413721, 1634261476, 1634261476, 1413721, 1;
1, 48024900, 1885939157025, 64069586905104, 1885939157025, 48024900, 1;
-
b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
T:= func< n,k,m | b(n,m)/(b(k,m)*b(n-k,m)) >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 03 2021
-
(* First program *)
b[n_, k_]:= b[n,k]= If[k==0, n!, Product[1 -ChebyshevT[j, k+1]^2, {j,n}]];
T[n_, k_, m_]= b[n,m]/(b[k,m]*b[n-k,m]);
Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jul 03 2021 *)
(* Second program *)
T[n_, k_, m_]:= T[n, k, m]= Product[(1 - ChebyshevT[2*j+2*k, m+1])/(1 - ChebyshevT[2*j, m+1]), {j, n-k}];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 03 2021 *)
-
def b(n, k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) )
def T(n, k, m): return b(n,m)/(b(k,m)*b(n-k,m))
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 03 2021
A156646
Triangle T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 10, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 484, 1, 1, 233289, 233289, 1, 1, 112444816, 54198633636, 112444816, 1, 1, 54198168025, 12591535188240100, 12591535188240100, 54198168025, 1, 1, 26123404543236, 2925290638056514680225, 1409984043580226203632400, 2925290638056514680225, 26123404543236, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 484, 1;
1, 233289, 233289, 1;
1, 112444816, 54198633636, 112444816, 1;
1, 54198168025, 12591535188240100, 12591535188240100, 54198168025, 1;
-
b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
T:= func< n,k,m | b(n,m)/(b(k,m)*b(n-k,m)) >;
[T(n,k,10): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 03 2021
-
(* First program *)
b[n_, k_]:= b[n,k]= If[k==0, n!, Product[1 -ChebyshevT[j, k+1]^2, {j,n}]];
T[n_, k_, m_]= b[n,m]/(b[k,m]*b[n-k,m]);
Table[T[n,k,10], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jul 03 2021 *)
(* Second program *)
T[n_, k_, m_]:= T[n, k, m]= Product[(1 - ChebyshevT[2*j+2*k, m+1])/(1 - ChebyshevT[2*j, m+1]), {j, n-k}];
Table[T[n,k,12], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 03 2021 *)
-
def b(n, k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) )
def T(n, k, m): return b(n,m)/(b(k,m)*b(n-k,m))
flatten([[T(n, k, 10) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 03 2021
A173585
Triangle T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, q) = Product_{j=1..n} t(2*j, q), t(n, q) = (1/4)*( (2 + sqrt(q))^n + (2 - sqrt(q))^n - 2 ), and q = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 16, 1, 1, 225, 225, 1, 1, 3136, 44100, 3136, 1, 1, 43681, 8561476, 8561476, 43681, 1, 1, 608400, 1660970025, 23150231104, 1660970025, 608400, 1, 1, 8473921, 322220846025, 62555239000969, 62555239000969, 322220846025, 8473921, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 16, 1;
1, 225, 225, 1;
1, 3136, 44100, 3136, 1;
1, 43681, 8561476, 8561476, 43681, 1;
1, 608400, 1660970025, 23150231104, 1660970025, 608400, 1;
-
b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
T:= func< n,k,m | b(n,m)/(b(k,m)*b(n-k,m)) >;
[T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 06 2021
-
(* First program *)
f[n_, q_]:= (1/4)*((2+Sqrt[q])^n + (2-Sqrt[q])^n -2);
c[n_, q_]:= Product[f[k, q], {k, 2, n, 2}]//Simplify;
T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n - k, q]);
Table[T[n, k, 3], {n, 0, 10, 2}, {k, 0, n, 2}]//Flatten (* modified by G. C. Greubel, Jul 06 2021 *)
(* Second program *)
t[n_, q_]:= (1/4)*(Round[(2+Sqrt[q])^n + (2-Sqrt[q])^n] -2);
c[n_, q_]:= Product[t[2*j, q], {j,n}];
T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 06 2021 *)
-
@CachedFunction
def f(n,q): return (1/4)*( round((2 + sqrt(q))^n + (2 - sqrt(q))^n) - 2 )
def c(n,q): return product( f(2*j, q) for j in (1..n))
def T(n,k,q): return c(n, q)/(c(k, q)*c(n-k, q))
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 06 2021
A082649
Triangle of coefficients in expansion of sinh^2(n*x) in powers of sinh(x).
Original entry on oeis.org
1, 4, 4, 16, 24, 9, 64, 128, 80, 16, 256, 640, 560, 200, 25, 1024, 3072, 3456, 1792, 420, 36, 4096, 14336, 19712, 13440, 4704, 784, 49, 16384, 65536, 106496, 90112, 42240, 10752, 1344, 64, 65536, 294912, 552960, 559104, 329472, 114048, 22176, 2160, 81, 262144, 1310720, 2785280, 3276800, 2329600
Offset: 1
sinh^2 x = sinh^2 x
sinh^2 2x = 4 sinh^4 x + 4 sinh^2 x
sinh^2 3x = 16 sinh^6 x + 24 sinh^4 x + 9 sinh^2 x
sinh^2 4x = 64 sinh^8 x + 128 sinh^6 x + 80 sinh^4 x + 16 sinh^2 x
sinh^2 5x = 256 sinh^10 x + 640 sinh^8 x + 560 sinh^6 x + 200 sinh^4 x + 25 sinh^2 x
From _Peter Bala_, Feb 02 2016: (Start)
sin^2(x) = 1 - cos^2(x);
sin^2(2*x) = -4*cos^4(x) + 4*cos^2(x);
sin^2(3*x) = 1 - (16*cos^6(x) - 24*cos^4(x) + 9*cos^2(x));
sin^2(4*x) = -64*cos^8(x) + 128*cos^6(x) - 80*cos^4(x) + 16*cos^2(x);
sin^2(5*x) = 1 - (256*cos^10(x) - 640*cos^8(x) + 560*cos^6(x) - 200*cos^4(x) + 25*cos^2(x)). (End)
-
g:= (1+x*y)/((1-x*y)*(1-(4+2*y)*x+x^2*y^2)):
S:= series(g,x,15):
seq(seq(coeff(coeff(S,x,n),y,k),k=0..n),n=0..14); # Robert Israel, Dec 20 2017
-
Table[Reverse[CoefficientList[1/x TrigExpand[Sinh[n ArcSinh[Sqrt[x]]]^2], x]], {n, 7}] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)
Abs[Table[CoefficientList[x^n Piecewise[{{1 - ChebyshevT[n, 1/Sqrt[x]]^2, Mod[n, 2] == 0}, {ChebyshevT[n, 1/Sqrt[x]]^2, Mod[n, 2] == 1}}], x], {n, 10}]] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)
A138331
a(n) = C(n+5, 5)*(n+3)*(-1)^(n+1)*16/3.
Original entry on oeis.org
-16, 128, -560, 1792, -4704, 10752, -22176, 42240, -75504, 128128, -208208, 326144, -495040, 731136, -1054272, 1488384, -2062032, 2808960, -3768688, 4987136, -6517280, 8419840, -10764000, 13628160, -17100720, 21280896, -26279568, 32220160, -39239552
Offset: 0
-
[ Binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3: n in [0..28] ];
-
k:=3; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..28] ];
-
seq(binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3, n=0..40); # Robert Israel, Oct 26 2017
-
LinearRecurrence[{-7,-21,-35,-35,-21,-7,-1},{-16,128,-560,1792,-4704,10752,-22176},30] (* Harvey P. Dale, May 27 2017 *)
-
for(n=0,28,print1(polcoeff(taylor(16*(x-1)/(x+1)^7,x),n),","));
A138332
C(n+7, 7)*(n+4)*(-1)^(n+1)*16.
Original entry on oeis.org
-64, 640, -3456, 13440, -42240, 114048, -274560, 604032, -1235520, 2379520, -4356352, 7637760, -12899328, 21085440, -33488640, 51845376, -78450240, 116290944, -169206400, 242070400, -341003520, 473616000, -649284480, 879465600, -1178049600
Offset: 0
-
[ Binomial(n+7, 7)*(n+4)*(-1)^(n+1)*16: n in [0..24] ];
-
k:=4; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..24] ];
-
for(n=0,24,print1(polcoeff(taylor(64*(x-1)/(x+1)^9,x),n),","));
A138333
C(n+9, 9)*(n+5)*(-1)^(n+1)*256/5.
Original entry on oeis.org
-256, 3072, -19712, 90112, -329472, 1025024, -2818816, 7028736, -16180736, 34850816, -70946304, 137592832, -255836672, 458422272, -794962432, 1338884096, -2196606720, 3519493120, -5519205120, 8487198720, -12819206400, 19045678080, -27869287680
Offset: 0
-
[ Binomial(n+9, 9)*(n+5)*(-1)^(n+1)*256/5: n in [0..22] ];
-
k:=5; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..22] ];
-
for(n=0,22,print1(polcoeff(taylor(256*(x-1)/(x+1)^11,x),n),","));
A138334
C(n+11, 11)*(n+6)*(-1)^(n+1)*512/3.
Original entry on oeis.org
-1024, 14336, -106496, 559104, -2329600, 8200192, -25346048, 70606848, -180590592, 429977600, -963149824, 2046693376, -4153583616, 8094162944, -15214592000, 27690557440, -48952949760, 84293314560, -141710499840, 233076480000
Offset: 0
-
[ Binomial(n+11, 11)*(n+6)*(-1)^(n+1)*512/3: n in [0..19] ];
-
k:=6; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..19] ];
-
Table[Binomial[n+11,11](n+6)(-1)^(n+1) 512/3,{n,0,20}] (* Harvey P. Dale, Jun 03 2021 *)
-
for(n=0,19,print1(polcoeff(taylor(1024*(x-1)/(x+1)^13,x),n),","));
Showing 1-10 of 10 results.
Comments