cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A136667 Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - T_n(x)^2, where T_n(x) is the n-th Hermite polynomial of the Hochstadt kind (A137286) as related to the generalized Chebyshev in a Shabat way (A123583): p(x,n)=x*p(x,n-1)-p(x,n-2); q(x,n)=1-p(x,n)^2.

Original entry on oeis.org

0, 1, 0, -1, -3, 0, 4, 0, -1, 1, 0, -25, 0, 10, 0, -1, -63, 0, 144, 0, -97, 0, 18, 0, -1, 1, 0, -1089, 0, 924, 0, -262, 0, 28, 0, -1, -2303, 0, 8352, 0, -9489, 0, 3576, 0, -574, 0, 40, 0, -1, 1, 0, -77841, 0, 103230, 0, -49291, 0, 10548, 0, -1099, 0, 54, 0, -1, -147455, 0, 748800, 0, -1215585, 0, 699630, 0, -188043, 0
Offset: 1

Views

Author

Roger L. Bagula, Apr 02 2008

Keywords

Comments

Row sums are {0, 0, 0, -15, 1, -399, -399, -14399, -78399, -639999, -12959999}.

Examples

			The irregular triangle begins
  {0},
  {1, 0, -1},
  {-3, 0, 4, 0, -1},
  {1, 0, -25, 0, 10, 0, -1},
  {-63, 0, 144, 0, -97, 0, 18, 0, -1},
  {1, 0, -1089, 0, 924, 0, -262,0, 28, 0, -1},
  {-2303, 0, 8352, 0, -9489, 0, 3576, 0, -574, 0, 40, 0, -1},
  {1, 0, -77841, 0, 103230, 0, -49291, 0, 10548,0, -1099, 0, 54, 0, -1},
  ...
		

References

  • Defined: page 8 and pages 42 - 43: Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986
  • G. B. Shabat and I. A. Voevodskii, Drawing curves over number fields, The Grothendieck Festschift, vol. 3, Birkhäuser, 1990, pp. 199-22

Crossrefs

Programs

  • Mathematica
    P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; Q[x_, n_] := Q[x, n] = 1 - P[x, n]^2; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a = Join[{{0}}, Table[CoefficientList[Q[x, n], x], {n, 0, 10}]]; Flatten[a]
  • PARI
    polx(n) = if (n == 0, 1, if (n == 1, x, x*polx(n - 1) - n*polx(n - 2)));
    tabf(nn) = {for (n = 0, nn, pol = 1 - polx(n)^2; for (i = 0, 2*n, print1(polcoeff(pol, i), ", "); ); print(); ); }  \\ Michel Marcus, Feb 26 2018

Formula

out=1-A137286(x,n)^2; p(x,n)=x*p(x,n-1)-p(x,n-2); q(x,n)=1-p(x,n)^2.

Extensions

Keyword changed to tabf by Michel Marcus, Feb 26 2018

A156647 Square array T(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2) with T(n, 0) = n!, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, -3, 2, 1, -8, 144, 6, 1, -15, 2304, -97200, 24, 1, -24, 14400, -22579200, 914457600, 120, 1, -35, 57600, -857304000, 7517247897600, -119833267276800, 720, 1, -48, 176400, -13548902400, 3163657512960000, -85018329720343756800, 218719679433615360000, 5040
Offset: 0

Views

Author

Roger L. Bagula, Feb 12 2009

Keywords

Examples

			Square array begins as:
    1,                1,                     1, ...;
    1,               -3,                    -8, ...;
    2,              144,                  2304, ...;
    6,           -97200,             -22579200, ...;
   24,        914457600,         7517247897600, ...;
  120, -119833267276800, -85018329720343756800, ...;
Triangle begins as:
  1;
  1,   1;
  1,  -3,     2;
  1,  -8,   144,          6;
  1, -15,  2304,     -97200,            24;
  1, -24, 14400,  -22579200,     914457600,              120;
  1, -35, 57600, -857304000, 7517247897600, -119833267276800, 720;
		

Crossrefs

Cf. A123583.

Programs

  • Magma
    T:= func< n,k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
    [T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 02 2021
    
  • Mathematica
    T[n_, k_]= If[k==0, n!, Product[1 - ChebyshevT[j, k+1]^2, {j,n}]];
    Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jul 02 2021 *)
  • Sage
    def T(n,k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) )
    flatten([[T(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 02 2021

Formula

T(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2) with T(n, 0) = n! (square array).

Extensions

Edited by G. C. Greubel, Jul 02 2021

A156645 Triangle T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 36, 1, 1, 1225, 1225, 1, 1, 41616, 1416100, 41616, 1, 1, 1413721, 1634261476, 1634261476, 1413721, 1, 1, 48024900, 1885939157025, 64069586905104, 1885939157025, 48024900, 1, 1, 1631432881, 2176372249076025, 2511659716192658889, 2511659716192658889, 2176372249076025, 1631432881, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 12 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,        1;
  1,       36,             1;
  1,     1225,          1225,              1;
  1,    41616,       1416100,          41616,             1;
  1,  1413721,    1634261476,     1634261476,       1413721,        1;
  1, 48024900, 1885939157025, 64069586905104, 1885939157025, 48024900, 1;
		

Crossrefs

Cf. A007318 (m=0), A173585 (m=1), this sequence (m=2), A156646 (m=10).

Programs

  • Magma
    b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
    T:= func< n,k,m | b(n,m)/(b(k,m)*b(n-k,m)) >;
    [T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 03 2021
    
  • Mathematica
    (* First program *)
    b[n_, k_]:= b[n,k]= If[k==0, n!, Product[1 -ChebyshevT[j, k+1]^2, {j,n}]];
    T[n_, k_, m_]= b[n,m]/(b[k,m]*b[n-k,m]);
    Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jul 03 2021 *)
    (* Second program *)
    T[n_, k_, m_]:= T[n, k, m]= Product[(1 - ChebyshevT[2*j+2*k, m+1])/(1 - ChebyshevT[2*j, m+1]), {j, n-k}];
    Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 03 2021 *)
  • Sage
    def b(n, k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) )
    def T(n, k, m): return b(n,m)/(b(k,m)*b(n-k,m))
    flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 03 2021

Formula

T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 2.
From G. C. Greubel, Jul 03 2021: (Start)
T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = (1/2^n)*Product_{j=1..n} (1 - ChebyshevT(2*j, k+1)), b(n, 0) = n!, and m = 2.
T(n, k, m) = Product_{j=1..n-k} ( (1 - ChebyshevT(2*j+2*k, m+1))/(1 - ChebyshevT(2*j, m+1)) ) with m = 2. (End)

Extensions

Edited by G. C. Greubel, Jul 03 2021

A156646 Triangle T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 10, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 484, 1, 1, 233289, 233289, 1, 1, 112444816, 54198633636, 112444816, 1, 1, 54198168025, 12591535188240100, 12591535188240100, 54198168025, 1, 1, 26123404543236, 2925290638056514680225, 1409984043580226203632400, 2925290638056514680225, 26123404543236, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 12 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,           1;
  1,         484,                 1;
  1,      233289,            233289,                 1;
  1,   112444816,       54198633636,         112444816,           1;
  1, 54198168025, 12591535188240100, 12591535188240100, 54198168025, 1;
		

Crossrefs

Cf. A007318 (m=0), A173585 (m=1), A156645 (m=2), this sequence (m=10).

Programs

  • Magma
    b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
    T:= func< n,k,m | b(n,m)/(b(k,m)*b(n-k,m)) >;
    [T(n,k,10): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 03 2021
    
  • Mathematica
    (* First program *)
    b[n_, k_]:= b[n,k]= If[k==0, n!, Product[1 -ChebyshevT[j, k+1]^2, {j,n}]];
    T[n_, k_, m_]= b[n,m]/(b[k,m]*b[n-k,m]);
    Table[T[n,k,10], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jul 03 2021 *)
    (* Second program *)
    T[n_, k_, m_]:= T[n, k, m]= Product[(1 - ChebyshevT[2*j+2*k, m+1])/(1 - ChebyshevT[2*j, m+1]), {j, n-k}];
    Table[T[n,k,12], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 03 2021 *)
  • Sage
    def b(n, k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) )
    def T(n, k, m): return b(n,m)/(b(k,m)*b(n-k,m))
    flatten([[T(n, k, 10) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 03 2021

Formula

T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 10.
From G. C. Greubel, Jul 03 2021: (Start)
T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = (1/2^n)*Product_{j=1..n} (1 - ChebyshevT(2*j, k+1)), b(n, 0) = n!, and m = 10.
T(n, k, m) = Product_{j=1..n-k} ( (1 - ChebyshevT(2*j+2*k, m+1))/(1 - ChebyshevT(2*j, m+1)) ) with m = 10. (End)

Extensions

Edited by G. C. Greubel, Jul 03 2021

A173585 Triangle T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, q) = Product_{j=1..n} t(2*j, q), t(n, q) = (1/4)*( (2 + sqrt(q))^n + (2 - sqrt(q))^n - 2 ), and q = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 16, 1, 1, 225, 225, 1, 1, 3136, 44100, 3136, 1, 1, 43681, 8561476, 8561476, 43681, 1, 1, 608400, 1660970025, 23150231104, 1660970025, 608400, 1, 1, 8473921, 322220846025, 62555239000969, 62555239000969, 322220846025, 8473921, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     16,          1;
  1,    225,        225,           1;
  1,   3136,      44100,        3136,          1;
  1,  43681,    8561476,     8561476,      43681,      1;
  1, 608400, 1660970025, 23150231104, 1660970025, 608400, 1;
		

Crossrefs

Cf. A022168 (q=0), A022173 (q=1), this sequence (q=3).
Cf. A007318 (m=0), this sequence (m=1), A156645 (m=2), A156646 (m=10).

Programs

  • Magma
    b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
    T:= func< n,k,m | b(n,m)/(b(k,m)*b(n-k,m)) >;
    [T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 06 2021
    
  • Mathematica
    (* First program *)
    f[n_, q_]:= (1/4)*((2+Sqrt[q])^n + (2-Sqrt[q])^n -2);
    c[n_, q_]:= Product[f[k, q], {k, 2, n, 2}]//Simplify;
    T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n - k, q]);
    Table[T[n, k, 3], {n, 0, 10, 2}, {k, 0, n, 2}]//Flatten (* modified by G. C. Greubel, Jul 06 2021 *)
    (* Second program *)
    t[n_, q_]:= (1/4)*(Round[(2+Sqrt[q])^n + (2-Sqrt[q])^n] -2);
    c[n_, q_]:= Product[t[2*j, q], {j,n}];
    T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
    Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 06 2021 *)
  • Sage
    @CachedFunction
    def f(n,q): return (1/4)*( round((2 + sqrt(q))^n + (2 - sqrt(q))^n) - 2 )
    def c(n,q): return product( f(2*j, q) for j in (1..n))
    def T(n,k,q): return c(n, q)/(c(k, q)*c(n-k, q))
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 06 2021

Formula

T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, q) = Product_{j=1..n} t(2*j, q), t(n, q) = (1/4)*( (2 + sqrt(q))^n + (2 - sqrt(q))^n - 2 ), and q = 3.
From G. C. Greubel, Jul 06 2021: (Start)
T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = (1/2^n)*Product_{j=1..n} (1 - ChebyshevT(2*j, k+1)), b(n, 0) = n!, and m = 1.
T(n, k, m) = Product_{j=1..n-k} ( (1 - ChebyshevT(2*j+2*k, m+1))/(1 - ChebyshevT(2*j, m+1)) ) with m = 1. (End)

Extensions

Edited by G. C. Greubel, Jul 06 2021

A082649 Triangle of coefficients in expansion of sinh^2(n*x) in powers of sinh(x).

Original entry on oeis.org

1, 4, 4, 16, 24, 9, 64, 128, 80, 16, 256, 640, 560, 200, 25, 1024, 3072, 3456, 1792, 420, 36, 4096, 14336, 19712, 13440, 4704, 784, 49, 16384, 65536, 106496, 90112, 42240, 10752, 1344, 64, 65536, 294912, 552960, 559104, 329472, 114048, 22176, 2160, 81, 262144, 1310720, 2785280, 3276800, 2329600
Offset: 1

Views

Author

Gary W. Adamson, May 16 2003, suggested by Herb Conn

Keywords

Comments

Using arcsin(x) = Pi/2 - arccos(x), valid for -1 < = x <= 1, we find sin^2(k*arcsin(x)) = sin^2(k*arccos(x)) for k odd, while sin^2(k*arcsin(x)) = 1 - sin^2(k*arccos(x)) for k even. Thus the expansion of sin^2(n*x) in powers of cos(x) will produce a similar table of coefficients. See the example section below. - Peter Bala, Feb 02 2017

Examples

			sinh^2 x = sinh^2 x
sinh^2 2x = 4 sinh^4 x + 4 sinh^2 x
sinh^2 3x = 16 sinh^6 x + 24 sinh^4 x + 9 sinh^2 x
sinh^2 4x = 64 sinh^8 x + 128 sinh^6 x + 80 sinh^4 x + 16 sinh^2 x
sinh^2 5x = 256 sinh^10 x + 640 sinh^8 x + 560 sinh^6 x + 200 sinh^4 x + 25 sinh^2 x
From _Peter Bala_, Feb 02 2016: (Start)
sin^2(x) = 1 - cos^2(x);
sin^2(2*x) = -4*cos^4(x) + 4*cos^2(x);
sin^2(3*x) = 1 - (16*cos^6(x) - 24*cos^4(x) + 9*cos^2(x));
sin^2(4*x) = -64*cos^8(x) + 128*cos^6(x) - 80*cos^4(x) + 16*cos^2(x);
sin^2(5*x) = 1 - (256*cos^10(x) - 640*cos^8(x) + 560*cos^6(x) - 200*cos^4(x) + 25*cos^2(x)). (End)
		

Crossrefs

A001108 gives row sums.
Closely related to A123583 and A123588.

Programs

  • Maple
    g:= (1+x*y)/((1-x*y)*(1-(4+2*y)*x+x^2*y^2)):
    S:= series(g,x,15):
    seq(seq(coeff(coeff(S,x,n),y,k),k=0..n),n=0..14); # Robert Israel, Dec 20 2017
  • Mathematica
    Table[Reverse[CoefficientList[1/x TrigExpand[Sinh[n ArcSinh[Sqrt[x]]]^2], x]], {n, 7}] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)
    Abs[Table[CoefficientList[x^n Piecewise[{{1 - ChebyshevT[n, 1/Sqrt[x]]^2, Mod[n, 2] == 0}, {ChebyshevT[n, 1/Sqrt[x]]^2, Mod[n, 2] == 1}}], x], {n, 10}]] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)

Formula

Coefficients are: 4^(n-1), (2n)4^(n-2), (2n)(2n-3)4^(n-3)/2!, (2n)(2n-4)(2n-5)4^(n-4)/3!, (2n)(2n-5)(2n-6)(2n-7)4^(n-5)/4!, (2n)(2n-6)(2n-7)(2n-8)(2n-9)4^(n-6)/5!...
G.f. as triangle: (1+x*y)/((1-x*y)*(1-(4+2*y)*x+x^2*y^2)). - Robert Israel, Dec 20 2017

Extensions

More terms from Robert Israel, Dec 20 2017

A138331 a(n) = C(n+5, 5)*(n+3)*(-1)^(n+1)*16/3.

Original entry on oeis.org

-16, 128, -560, 1792, -4704, 10752, -22176, 42240, -75504, 128128, -208208, 326144, -495040, 731136, -1054272, 1488384, -2062032, 2808960, -3768688, 4987136, -6517280, 8419840, -10764000, 13628160, -17100720, 21280896, -26279568, 32220160, -39239552
Offset: 0

Views

Author

Klaus Brockhaus, Mar 15 2008

Keywords

Comments

Fourth column of the triangle defined in A123588, seventh column of the triangle defined in A123583.

Crossrefs

Cf. A007318 (Pascal's triangle), A123588, A123583, A040977.

Programs

  • Magma
    [ Binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3: n in [0..28] ];
    
  • Magma
    k:=3; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..28] ];
    
  • Maple
    seq(binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3, n=0..40); # Robert Israel, Oct 26 2017
  • Mathematica
    LinearRecurrence[{-7,-21,-35,-35,-21,-7,-1},{-16,128,-560,1792,-4704,10752,-22176},30] (* Harvey P. Dale, May 27 2017 *)
  • PARI
    for(n=0,28,print1(polcoeff(taylor(16*(x-1)/(x+1)^7,x),n),","));

Formula

a(n) = coefficient of x^6 in the polynomial 1 - T_(n+3)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 16*(x-1)/(x+1)^7.
a(n) = (-1)^(n+1)*16*A040977(n).
a(n) = a(-n-5). - Bruno Berselli, Sep 13 2011

A138332 C(n+7, 7)*(n+4)*(-1)^(n+1)*16.

Original entry on oeis.org

-64, 640, -3456, 13440, -42240, 114048, -274560, 604032, -1235520, 2379520, -4356352, 7637760, -12899328, 21085440, -33488640, 51845376, -78450240, 116290944, -169206400, 242070400, -341003520, 473616000, -649284480, 879465600, -1178049600
Offset: 0

Views

Author

Klaus Brockhaus, Mar 15 2008

Keywords

Comments

Fifth column of the triangle defined in A123588, ninth column of the triangle defined in A123583.

Crossrefs

Cf. A007318 (Pascal's triangle), A123588, A123583, A053347.

Programs

  • Magma
    [ Binomial(n+7, 7)*(n+4)*(-1)^(n+1)*16: n in [0..24] ];
    
  • Magma
    k:=4; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..24] ];
    
  • PARI
    for(n=0,24,print1(polcoeff(taylor(64*(x-1)/(x+1)^9,x),n),","));

Formula

a(n) = coefficient of x^8 in the polynomial 1 - T_(n+4)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 64*(x-1)/(x+1)^9.
a(n) = (-1)^(n+1)*64*A053347(n).

A138333 C(n+9, 9)*(n+5)*(-1)^(n+1)*256/5.

Original entry on oeis.org

-256, 3072, -19712, 90112, -329472, 1025024, -2818816, 7028736, -16180736, 34850816, -70946304, 137592832, -255836672, 458422272, -794962432, 1338884096, -2196606720, 3519493120, -5519205120, 8487198720, -12819206400, 19045678080, -27869287680
Offset: 0

Views

Author

Klaus Brockhaus, Mar 15 2008

Keywords

Comments

Sixth column of the triangle defined in A123588, eleventh column of the triangle defined in A123583.

Crossrefs

Cf. A007318 (Pascal's triangle), A123588, A123583, A054334.

Programs

  • Magma
    [ Binomial(n+9, 9)*(n+5)*(-1)^(n+1)*256/5: n in [0..22] ];
    
  • Magma
    k:=5; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..22] ];
    
  • PARI
    for(n=0,22,print1(polcoeff(taylor(256*(x-1)/(x+1)^11,x),n),","));

Formula

a(n) = coefficient of x^10 in the polynomial 1 - T_(n+5)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 256*(x-1)/(x+1)^11.
a(n) = (-1)^(n+1)*256*A054334(n).

A138334 C(n+11, 11)*(n+6)*(-1)^(n+1)*512/3.

Original entry on oeis.org

-1024, 14336, -106496, 559104, -2329600, 8200192, -25346048, 70606848, -180590592, 429977600, -963149824, 2046693376, -4153583616, 8094162944, -15214592000, 27690557440, -48952949760, 84293314560, -141710499840, 233076480000
Offset: 0

Views

Author

Klaus Brockhaus, Mar 15 2008

Keywords

Comments

Seventh column of the triangle defined in A123588, thirteenth column of the triangle defined in A123583.

Crossrefs

Cf. A007318 (Pascal's triangle), A123588, A123583.

Programs

  • Magma
    [ Binomial(n+11, 11)*(n+6)*(-1)^(n+1)*512/3: n in [0..19] ];
    
  • Magma
    k:=6; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..19] ];
    
  • Mathematica
    Table[Binomial[n+11,11](n+6)(-1)^(n+1) 512/3,{n,0,20}] (* Harvey P. Dale, Jun 03 2021 *)
  • PARI
    for(n=0,19,print1(polcoeff(taylor(1024*(x-1)/(x+1)^13,x),n),","));

Formula

a(n) = coefficient of x^12 in the polynomial 1 - T_(n+6)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 1024*(x-1)/(x+1)^13.
Showing 1-10 of 10 results.