A123596 Squares alternating with triangular numbers.
0, 0, 1, 1, 4, 3, 9, 6, 16, 10, 25, 15, 36, 21, 49, 28, 64, 36, 81, 45, 100, 55, 121, 66, 144, 78, 169, 91, 196, 105, 225, 120, 256, 136, 289, 153, 324, 171, 361, 190, 400, 210, 441, 231, 484, 253, 529, 276, 576, 300, 625, 325, 676, 351, 729, 378, 784, 406, 841, 435
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Magma
[(3*n^2-1+(n^2+1)*(-1)^n)/16: n in [0..10]]; // G. C. Greubel, Oct 26 2017
-
Mathematica
CoefficientList[Series[x^2*(1+x+x^2)/((1-x)^3*(1+x)^3), {x, 0, 50}], x] (* or *) Table[(3*n^2-1+(n^2+1)*(-1)^n)/16, {n,0,50}] (* G. C. Greubel, Oct 26 2017 *) With[{nn=30},Riffle[Range[0,nn]^2,Accumulate[Range[0,nn]]]] (* or *) LinearRecurrence[{0,3,0,-3,0,1},{0,0,1,1,4,3},60] (* Harvey P. Dale, Feb 11 2020 *)
-
PARI
{a(n) = if(n%2,(n^2-1)/8,n^2/4)} \\ Michael Somos, Nov 18 2006
Formula
a(2*n) = n^2, a(2*n+1) = (n^2+n)/2.
From R. J. Mathar, Feb 12 2010: (Start)
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
G.f.: x^2*(1+x+x^2)/((1-x)^3*(1+x)^3). (End)
a(n) = (3*n^2-1+(n^2+1)*(-1)^n)/16. - Luce ETIENNE, May 30 2015
Extensions
Edited by Michael Somos, and several other correspondents, Nov 14 2005
Comments