A123692 Primes p such that p^2 divides 5^(p-1) - 1.
2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
Offset: 1
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.
Links
- Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
- Chris K. Caldwell, The Prime Glossary, Fermat quotient.
- Keith Conrad, The ring of integers in a radical extension.
- François G. Dorais and Dominic Klyve, A Wieferich prime search up to p < 6.7*10^15, J. Integer Seq. 14 (2011), Art. 11.9.2, 1-14.
- W. Keller and J. Richstein, Solutions of the congruence a^p-1 == 1 (mod p^r), Math. Comp. 74 (2005), 927-936.
- A. Paszkiewicz, A new prime p for which the least primitive root (mod p) and the least primitive root (mod p^2) are not equal, Math. Comp. 78 (2009), 1193-1195.
Programs
-
Mathematica
Select[Prime[Range[2500]], Divisible[5^(# - 1) - 1, #^2] &] (* Alonso del Arte, Aug 01 2014 *) Select[Prime[Range[55*10^6]],PowerMod[5,#-1,#^2]==1&] (* The program generates the first 4 terms of the sequence. *) (* Harvey P. Dale, Jan 29 2023 *)
-
PARI
N=10^9; default(primelimit, N); forprime(n=2, N, if(Mod(5, n^2)^(n-1)==1, print1(n, ", "))); \\ Joerg Arndt, May 01 2013
Extensions
More terms from Alexander Adamchuk, Nov 27 2006
Updated by Max Alekseyev, Jan 29 2012
Comments