A123854 Denominators in an asymptotic expansion for the cubic recurrence sequence A123851.
1, 4, 32, 128, 2048, 8192, 65536, 262144, 8388608, 33554432, 268435456, 1073741824, 17179869184, 68719476736, 549755813888, 2199023255552, 140737488355328, 562949953421312, 4503599627370496, 18014398509481984, 288230376151711744, 1152921504606846976
Offset: 0
Examples
A123851(n) ~ c^(3^n)*n^(- 1/2)/(1 + 3/(4*n) - 15/(32*n^2) + 113/(128*n^3) - 5397/(2048*n^4) + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167. [In Eq. (3.7), p. 166, the index in the summation for the Apostol-Bernoulli numbers should start at s = 0, not at s = 1. - _Petros Hadjicostas_, Aug 09 2019]
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499 [math.CA], 2006.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (2007), 292-314.
- Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant.
- Aimin Xu, Asymptotic expansion related to the Generalized Somos Recurrence constant, International Journal of Number Theory 15(10) (2019), 2043-2055. [The author gives recurrences and other formulas for the coefficients of the asymptotic expansion using the Apostol-Bernoulli numbers (see the reference above) and the Bell polynomials. - _Petros Hadjicostas_, Aug 09 2019]
Crossrefs
Programs
-
Maple
f:=proc(t,x) exp(sum(ln(1+m*x)/t^m,m=1..infinity)); end; for j from 0 to 29 do denom(coeff(series(f(3,x),x=0,30),x,j)); od; # Alternatively: A123854 := n -> denom(binomial(1/4,n)): seq(A123854(n), n=0..25); # Peter Luschny, Apr 07 2016
-
Mathematica
Denominator[CoefficientList[Series[ 1/Sqrt[Sqrt[1-x]], {x, 0, 25}], x]] (* Robert G. Wilson v, Mar 23 2014 *)
-
PARI
vector(25, n, n--; denominator(binomial(1/4,n)) ) \\ G. C. Greubel, Aug 08 2019
-
Sage
# uses[A000120] def A123854(n): return 1 << (3*n-A000120(n)) [A123854(n) for n in (0..25)] # Peter Luschny, Dec 02 2012
Formula
From Alexander Adamchuk, Oct 27 2006: (Start)
a(n) = 2^A004134(n).
a(n) = 2^(3n - A000120(n)). (End)
a(n) = denominator(binomial(1/4,n)). - Peter Luschny, Apr 07 2016
Comments