cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123865 a(n) = n^4 - 1.

Original entry on oeis.org

0, 15, 80, 255, 624, 1295, 2400, 4095, 6560, 9999, 14640, 20735, 28560, 38415, 50624, 65535, 83520, 104975, 130320, 159999, 194480, 234255, 279840, 331775, 390624, 456975, 531440, 614655, 707280, 809999, 923520, 1048575, 1185920, 1336335
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 5 = 0 iff n mod 5 > 0: a(A008587(n)) = 4; a(A047201(n)) = 0; a(n) mod 5 = 4*(1-A079998(n)).
A129292(n) = number of divisors of a(n) that are not greater than n. - Reinhard Zumkeller, Apr 09 2007

Crossrefs

Programs

Formula

G.f.: x^2*(15 + 5*x + 5*x^2 - x^3)/(1-x)^5. - Colin Barker, Jan 10 2012
-4*a(n+1) = -4*n*(n+2)*(n^2+2*n+2) = (n+n*i)*(n+2+n*i)*(n+(n+2)*i)*(n+2+(n+2)*i), where i is the imaginary unit. - Jon Perry, Feb 05 2014
From Vaclav Kotesovec, Feb 14 2015: (Start)
Sum_{n>=2} 1/a(n) = 7/8 - Pi*coth(Pi)/4 = A256919.
Sum_{n>=2} (-1)^n / a(n) = 1/8 - Pi/(4*sinh(Pi)). (End)
a(n) = A005563(A005563(n)). - Bruno Berselli, May 28 2015
E.g.f.: 1 + (-1 + x + 7*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Aug 08 2019
Product_{n>=2} (1 + 1/a(n)) = 4*Pi*csch(Pi). - Amiram Eldar, Jan 20 2021