cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A116395 Riordan array (1/sqrt(1-4*x), (1/sqrt(1-4*x)-1)/2).

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 20, 22, 8, 1, 70, 93, 47, 11, 1, 252, 386, 244, 81, 14, 1, 924, 1586, 1186, 500, 124, 17, 1, 3432, 6476, 5536, 2794, 888, 176, 20, 1, 12870, 26333, 25147, 14649, 5615, 1435, 237, 23, 1, 48620, 106762, 112028, 73489, 32714, 10135, 2168, 307, 26, 1
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Comments

Row sums are A007854. Diagonal sums are A116396.
Triangle T(n,k), 0 <= k <= n, read by rows given by [2,1,1,1,1,1,1,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 05 2007
Inverse of Riordan array (1/(1+2*x), x*(1+x)/(1+2*x)^2) (see A123876). - Philippe Deléham, Oct 25 2007

Examples

			Triangle begins:
    1;
    2,   1;
    6,   5,   1;
   20,  22,   8,  1;
   70,  93,  47, 11,  1;
  252, 386, 244, 81, 14, 1;
		

Programs

  • Magma
    [[ Round((4^n/2^k)*(&+[ (-1)^(k-j)*Binomial(k, j)*Gamma(n+(j+1)/2)/(Factorial(n)*Gamma((j+1)/2)) : j in [0..k]])) : k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 28 2019
    
  • Mathematica
    T[n_, k_]:= (4^n/2^k)*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n+(j-1)/2, n], {j, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 28 2019 *)
  • PARI
    {T(n,k) = (4^n/2^k)*sum(j=0, k, (-1)^(k-j)*binomial(k, j)* binomial(n+(j-1)/2, n))}; \\ G. C. Greubel, May 28 2019
    
  • Sage
    [[(4^n/2^k)*sum( (-1)^(k-j)*binomial(k, j)* binomial(n+(j-1)/2, n) for j in (0..k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 28 2019

Formula

Number triangle T(n,k) = (4^n/2^k)*Sum_{j=0..k} C(k,j)*C(n+(j-1)/2,n)*(-1)^(k-j).
Sum_{k=0..n} (-1)^k*T(n,k) = A000108(n), Catalan numbers. - Philippe Deléham, Nov 07 2006
T(n,k) = Sum_{j>=0} A039599(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007
Sum_{k=0..n} T(n,k)*x^k = A127053(n), A126985(n), A127016(n), A127017(n), A126987(n), A126986(n), A126982(n), A126984(n), A126983(n), A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 respectively. - Philippe Deléham, Oct 25 2007

A114164 Riordan array (1/(1-2x), x(1-x)/(1-2x)^2).

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 18, 8, 1, 16, 56, 41, 11, 1, 32, 160, 170, 73, 14, 1, 64, 432, 620, 377, 114, 17, 1, 128, 1120, 2072, 1666, 704, 164, 20, 1, 256, 2816, 6496, 6608, 3649, 1178, 223, 23, 1, 512, 6912, 19392, 24192, 16722, 7001, 1826, 291, 26, 1, 1024, 16640, 55680, 83232, 69876, 36365, 12235, 2675, 368, 29, 1
Offset: 0

Views

Author

Paul Barry, Nov 15 2005

Keywords

Comments

Row sums are A081567. Diagonal sums are A085810. Product of Pascal triangle A007318 and Morgan-Voyce triangle A085478.
Unsigned version of A123876. - Philippe Deléham, Oct 25 2007

Examples

			Triangle begins:
   1;
   2,   1;
   4,   5,   1;
   8,  18,   8,  1;
  16,  56,  41, 11,  1;
  32, 160, 170, 73, 14, 1;
  ...
		

Crossrefs

T(2n,n) gives A026000.

Formula

Number triangle T(n,k) = Sum_{j=0..n} C(n, j)*C(j+k, 2k);
T(n,k) = Sum_{j=0..n} C(n, k+j)*C(k, k-j)*2^(n-k-j);
T(n,k) = Sum_{j=0..n-k} C(n+k-j, n-k-j)*C(k, j)*(-1)^j*2^(n-k-j).
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 4*T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 2, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014

Extensions

More terms from Michel Marcus, Sep 09 2024

A123877 Expansion of (1+2*x)/(1+3*x+3*x^2).

Original entry on oeis.org

1, -1, 0, 3, -9, 18, -27, 27, 0, -81, 243, -486, 729, -729, 0, 2187, -6561, 13122, -19683, 19683, 0, -59049, 177147, -354294, 531441, -531441, 0, 1594323, -4782969, 9565938, -14348907, 14348907, 0, -43046721
Offset: 0

Views

Author

Paul Barry, Oct 16 2006

Keywords

Comments

Row sums of number triangle A123876.

Crossrefs

Cf. A123876.

Programs

  • GAP
    a:=[1,-1];; for n in [3..40] do a[n]:=-3*(a[n-1]+a[n-2]); od; a; # G. C. Greubel, Aug 08 2019
  • Magma
    I:=[1,-1]; [n le 2 select I[n] else -3*(Self(n-1)+Self(n-2)): n in [1..30]]; // G. C. Greubel, Aug 08 2019
    
  • Maple
    seq(coeff(series((1+2*x)/(1+3*x+3*x^2), x, n+1), x, n), n = 0..40); # G. C. Greubel, Aug 08 2019
  • Mathematica
    CoefficientList[Series[(1+2x)/(1+3x+3x^2),{x,0,40}],x] (* or *) LinearRecurrence[{-3,-3},{1,-1},40] (* Harvey P. Dale, Dec 17 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+2*x)/(1+3*x+3*x^2)) \\ G. C. Greubel, Aug 08 2019
    
  • Sage
    def A123877_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+2*x)/(1+3*x+3*x^2)).list()
    A123877_list(40) # G. C. Greubel, Aug 08 2019
    

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(cos(2*Pi*k/3) + sin(2*Pi*k/3)/sqrt(3)).
G.f.: G(0)*(1+2*x)/(2+3*x), where G(k)= 1 + 1/(1 - x*(k+3)/(x*(k+4) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 16 2013
E.g.f.: (1/3)*exp(-3*x/2)*(3*cos((sqrt(3)*x)/2) + sqrt(3)*sin((sqrt(3)*x)/2)). - Stefano Spezia, Aug 08 2019
Showing 1-3 of 3 results.