cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123876 Riordan array (1/(1+2*x), x*(1+x)/(1+2*x)^2).

Original entry on oeis.org

1, -2, 1, 4, -5, 1, -8, 18, -8, 1, 16, -56, 41, -11, 1, -32, 160, -170, 73, -14, 1, 64, -432, 620, -377, 114, -17, 1, -128, 1120, -2072, 1666, -704, 164, -20, 1, 256, -2816, 6496, -6608, 3649, -1178, 223, -23, 1, -512, 6912, -19392, 24192, -16722, 7001, -1826, 291, -26, 1
Offset: 0

Views

Author

Paul Barry, Oct 16 2006

Keywords

Comments

Inverse of A116395.
Row sums are A123877.
Diagonal sums are (-1)^n*A085810(n).
Unsigned version is A114164.

Examples

			Triangle begins
    1;
   -2,   1;
    4,  -5,    1;
   -8,  18,   -8,   1;
   16, -56,   41, -11,   1;
  -32, 160, -170,  73, -14, 1;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> (-1)^(n-k)*Sum([0..n], j-> 2^(n-j)*Binomial(k,j-k)*Binomial(n,j) ))));
  • Magma
    [(-1)^(n-k)*(&+[2^(n-j)*Binomial(k,j-k)*Binomial(n,j): j in [0..n]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 08 2019
    
  • Mathematica
    Table[(-1)^(n-k)*Sum[2^(n-j)*Binomial[k,j-k]*Binomial[n,j], {j,0,n}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 08 2019 *)
  • PARI
    T(n,k) = b=binomial; (-1)^(n-k)*sum(j=0,n, 2^(n-j)*b(k,j-k)* b(n,j)); \\ G. C. Greubel, Aug 08 2019
    
  • Sage
    b=binomial;
    [[(-1)^(n-k)*sum(2^(n-j)*b(k,j-k)*b(n,j) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 08 2019
    

Formula

Number triangle T(n,k) = (-1)^(n-k)*Sum_{j=0..n} C(k,j-k)*C(n,j)*2^(n-j).
T(n,k) = T(n-1,k-1) - 4*T(n-1,k) + T(n-2,k-1) - 4*T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = -2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 18 2014

Extensions

More terms added by G. C. Greubel, Aug 08 2019

A168615 Inverse binomial transform of A169609, or of A144437 preceded by 1.

Original entry on oeis.org

1, 2, -2, 0, 6, -18, 36, -54, 54, 0, -162, 486, -972, 1458, -1458, 0, 4374, -13122, 26244, -39366, 39366, 0, -118098, 354294, -708588, 1062882, -1062882, 0, 3188646, -9565938, 19131876, -28697814, 28697814, 0, -86093442, 258280326, -516560652
Offset: 0

Views

Author

Paul Curtz, Dec 01 2009

Keywords

Crossrefs

Programs

  • Magma
    [ n le 2 select n else n eq 3 select -2 else -3*Self(n-1)-3*Self(n-2): n in [1..37] ]; // Klaus Brockhaus, Dec 03 2009
  • Mathematica
    Join[{1,2,-2}, LinearRecurrence[{-3, -3}, {0, 6}, 25]] (* G. C. Greubel, Jul 27 2016 *)
    LinearRecurrence[{-3,-3},{1,2,-2},40] (* Harvey P. Dale, Jul 21 2024 *)

Formula

a(n) = -3*a(n-1) - 3*a(n-2) for n > 2; a(0) = 1, a(1) = 2, a(2) = -2.
a(n) = 2*A123877(n-1), n>0.
G.f.: 1+2*x*(1+2*x)/(1+3*x+3*x^2).
a(6*m + 3) = 0, m>=0. - G. C. Greubel, Jul 27 2016

Extensions

Edited and extended by Klaus Brockhaus, Dec 03 2009
Showing 1-2 of 2 results.