cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123916 Number of binary words whose (unique) decreasing Lyndon decomposition is into Lyndon words each with an odd number of 1's; EULER transform of A000048.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 19, 34, 65, 120, 229, 432, 829, 1583, 3051, 5874, 11370, 22012, 42756, 83113, 161917, 315723, 616588, 1205232, 2358604, 4619485, 9055960, 17766086, 34880215, 68524486, 134707150, 264960828, 521449025
Offset: 1

Views

Author

Mike Zabrocki, Oct 28 2006

Keywords

Examples

			The binary words 1111, 1101, 1001, 0101, 0111, 0001 of length 4 decompose as 1*1*1*1, 1*1*01, 1*001, 01*01, 0111, 0001 and each subword has an odd number of 1's, therefore a(4)=6.
G.f. A(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 19*x^7 + 34*x^8 + ... such that A(x)^2 * (1 - 2*x) = A(x^2).
		

Crossrefs

Programs

  • PARI
    /* G.f. A(x) satisfies: A(x)^2 = A(x^2)/(1 - 2*x) */
    {a(n) = my(A=x); for(i=1,n, A = sqrt( subst(A,x, x^2)/(1 - 2*x +x*O(x^n)))); polcoeff(A,n)}
    for(n=1,50, print1(a(n),", ")) \\ Paul D. Hanna, Apr 17 2016
    
  • PARI
    /* As the EULER transform of A000048 */
    {A000048(n) = sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n)} \\ Michael B. Porter
    {a(n) = polcoeff( prod(k=1,n, 1/(1 - x^k +x*O(x^n))^A000048(k)), n-1)}
    for(n=1,50, print1(a(n),", ")) \\ Paul D. Hanna, Apr 17 2016

Formula

Prod_{n>=1} 1/(1-q^n)^A000048(n) = 1 + sum_{n>=1} a(n) q^n.
G.f. A(x) satisfies: A(x)^2 = A(x^2) / (1 - 2*x). - Paul D. Hanna, Apr 17 2016
a(n) ~ c * 2^n / sqrt(n), where c = 0.3412831644583761326654... . - Vaclav Kotesovec, Apr 18 2016
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^2 * (v^2 - 2*u^2*v - u^4) + 2*w*u^4. - Michael Somos, Jun 27 2017