cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A124417 a(n) = least k such that 2^i*k+1 is prime for 1<=i<=n.

Original entry on oeis.org

1, 1, 9, 765, 765, 8325, 8325, 7757430, 428547690, 102764221560, 694561346985, 108428872433310, 379041973928475, 34628781572140470, 34628781572140470
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    k = 1; Do[If[n < 3, inc = 1,If[n == 3, inc = 3, inc = 15];];If[Mod[k, inc] > 0, k = k + inc - Mod[k, inc]];While[Nand @@ PrimeQ[Table[2^j, {j, n}]*k + 1], k += inc]; Print[k], {n, 1, 15}] (* Ray Chandler, Nov 21 2006 *)

Extensions

Edited by Ray Chandler, Nov 21 2006
a(10) from Farideh Firoozbakht, Nov 25 2006
a(11)-a(15) from Giovanni Resta, Apr 24 2019

A124412 Numbers k such that 2*k+1, 4*k+1, 8*k+1 and 16*k+1 are primes.

Original entry on oeis.org

765, 1065, 1155, 1530, 3105, 3420, 3705, 5160, 6840, 7695, 8325, 9060, 11265, 11505, 12195, 14835, 15390, 15885, 16650, 17655, 20745, 22185, 23205, 27300, 28155, 28995, 30165, 30690, 33300, 33825, 39015, 41715, 42690, 44370, 48465, 49935
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[3500], And @@ PrimeQ /@ ({2, 4, 8, 16}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)

A124413 Numbers k such that 2*k+1, 4*k+1, 8*k+1, 16*k+1 and 32*k+1 are primes.

Original entry on oeis.org

765, 3420, 7695, 8325, 16650, 22185, 28995, 33300, 41715, 52935, 72510, 75075, 82950, 99810, 104715, 106425, 115620, 121275, 145635, 159840, 165900, 173070, 188745, 190815, 192795, 222870, 225705, 239400, 240510, 253395, 253890, 256410
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[20000], And @@ PrimeQ /@ ({2, 4, 8, 16, 32}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)

A124414 Numbers k such that 2*k+1, 4*k+1, 8*k+1, 16*k+1, 32*k+1 and 64*k+1 are primes.

Original entry on oeis.org

8325, 16650, 82950, 165900, 192795, 222870, 239400, 290235, 601560, 884220, 971685, 1020600, 1065570, 1120470, 1170330, 1196715, 1263360, 1638735, 1768440, 1811940, 1940190, 1948815, 2061810, 2207685, 2240940, 2639295, 2830905
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[200000], And @@ PrimeQ /@ ({2, 4, 8, 16, 32, 64}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)

A124415 Numbers k such that 2*k+1, 4*k+1, 8*k+1, 16*k+1, 32*k+1, 64*k+1 and 128*k+1 are primes.

Original entry on oeis.org

8325, 82950, 884220, 1120470, 3441690, 5627895, 5765505, 7664745, 7757430, 8555040, 10739505, 11891625, 15514860, 15623475, 18268455, 22631970, 24833775, 27373410, 29342895, 31286970, 31577205, 50077455, 51541035, 58646520
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[4000000], And @@ PrimeQ /@ ({2, 4, 8, 16, 32, 64, 128}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)
    Select[Range[15,59*10^6,15],AllTrue[2^Range[7] #+1,PrimeQ]&]  (* Harvey P. Dale, Jan 19 2025 *)

Extensions

Corrected and extended by Ray Chandler, Nov 21 2006

A124416 Numbers k such that 2*k+1, 4*k+1, 8*k+1, 16*k+1, 32*k+1, 64*k+1, 128*k+1 and 256*k+1 are primes.

Original entry on oeis.org

7757430, 31286970, 360821505, 365536215, 414779430, 418803000, 428547690, 428823900, 434768475, 508654155, 584808795, 732681630, 809814510, 846079035, 857095380, 968314215, 1115279880, 1187901285, 1193371860, 1244805450
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[10^8], And @@ PrimeQ /@ ({2, 4, 8, 16, 32, 64, 128, 256}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)
    Select[15*Range[83*10^6],AllTrue[#*2^Range[8]+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 23 2020 *)

Extensions

Extended by Ray Chandler, Nov 21 2006
Showing 1-6 of 6 results.