A124417 a(n) = least k such that 2^i*k+1 is prime for 1<=i<=n.
1, 1, 9, 765, 765, 8325, 8325, 7757430, 428547690, 102764221560, 694561346985, 108428872433310, 379041973928475, 34628781572140470, 34628781572140470
Offset: 1
Programs
-
Mathematica
k = 1; Do[If[n < 3, inc = 1,If[n == 3, inc = 3, inc = 15];];If[Mod[k, inc] > 0, k = k + inc - Mod[k, inc]];While[Nand @@ PrimeQ[Table[2^j, {j, n}]*k + 1], k += inc]; Print[k], {n, 1, 15}] (* Ray Chandler, Nov 21 2006 *)
Extensions
Edited by Ray Chandler, Nov 21 2006
a(10) from Farideh Firoozbakht, Nov 25 2006
a(11)-a(15) from Giovanni Resta, Apr 24 2019