cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A124041 Numbers k such that 2*k+1, 4*k+1 and 8*k+1 are primes.

Original entry on oeis.org

9, 39, 165, 219, 249, 309, 414, 534, 639, 765, 1044, 1065, 1089, 1155, 1395, 1509, 1530, 1554, 1590, 1884, 2079, 2115, 2130, 2310, 2319, 2430, 2475, 2709, 2874, 3060, 3105, 3354, 3420, 3684, 3705, 3780, 3819, 4104, 4314, 4554, 4599, 4659, 4869, 5160
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[3*Range[2000], And @@ PrimeQ /@ ({2, 4, 8}*# + 1) &] (* Ray Chandler, Dec 06 2006 *)

A124412 Numbers k such that 2*k+1, 4*k+1, 8*k+1 and 16*k+1 are primes.

Original entry on oeis.org

765, 1065, 1155, 1530, 3105, 3420, 3705, 5160, 6840, 7695, 8325, 9060, 11265, 11505, 12195, 14835, 15390, 15885, 16650, 17655, 20745, 22185, 23205, 27300, 28155, 28995, 30165, 30690, 33300, 33825, 39015, 41715, 42690, 44370, 48465, 49935
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[3500], And @@ PrimeQ /@ ({2, 4, 8, 16}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)

A124413 Numbers k such that 2*k+1, 4*k+1, 8*k+1, 16*k+1 and 32*k+1 are primes.

Original entry on oeis.org

765, 3420, 7695, 8325, 16650, 22185, 28995, 33300, 41715, 52935, 72510, 75075, 82950, 99810, 104715, 106425, 115620, 121275, 145635, 159840, 165900, 173070, 188745, 190815, 192795, 222870, 225705, 239400, 240510, 253395, 253890, 256410
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[20000], And @@ PrimeQ /@ ({2, 4, 8, 16, 32}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)

A124414 Numbers k such that 2*k+1, 4*k+1, 8*k+1, 16*k+1, 32*k+1 and 64*k+1 are primes.

Original entry on oeis.org

8325, 16650, 82950, 165900, 192795, 222870, 239400, 290235, 601560, 884220, 971685, 1020600, 1065570, 1120470, 1170330, 1196715, 1263360, 1638735, 1768440, 1811940, 1940190, 1948815, 2061810, 2207685, 2240940, 2639295, 2830905
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[200000], And @@ PrimeQ /@ ({2, 4, 8, 16, 32, 64}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)

A124415 Numbers k such that 2*k+1, 4*k+1, 8*k+1, 16*k+1, 32*k+1, 64*k+1 and 128*k+1 are primes.

Original entry on oeis.org

8325, 82950, 884220, 1120470, 3441690, 5627895, 5765505, 7664745, 7757430, 8555040, 10739505, 11891625, 15514860, 15623475, 18268455, 22631970, 24833775, 27373410, 29342895, 31286970, 31577205, 50077455, 51541035, 58646520
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[4000000], And @@ PrimeQ /@ ({2, 4, 8, 16, 32, 64, 128}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)
    Select[Range[15,59*10^6,15],AllTrue[2^Range[7] #+1,PrimeQ]&]  (* Harvey P. Dale, Jan 19 2025 *)

Extensions

Corrected and extended by Ray Chandler, Nov 21 2006

A124416 Numbers k such that 2*k+1, 4*k+1, 8*k+1, 16*k+1, 32*k+1, 64*k+1, 128*k+1 and 256*k+1 are primes.

Original entry on oeis.org

7757430, 31286970, 360821505, 365536215, 414779430, 418803000, 428547690, 428823900, 434768475, 508654155, 584808795, 732681630, 809814510, 846079035, 857095380, 968314215, 1115279880, 1187901285, 1193371860, 1244805450
Offset: 1

Views

Author

Artur Jasinski, Nov 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[10^8], And @@ PrimeQ /@ ({2, 4, 8, 16, 32, 64, 128, 256}*# + 1) &] (* Ray Chandler, Nov 21 2006 *)
    Select[15*Range[83*10^6],AllTrue[#*2^Range[8]+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 23 2020 *)

Extensions

Extended by Ray Chandler, Nov 21 2006

A089761 Smallest k such that k*i^2 + 1 is prime for i = 1 to n.

Original entry on oeis.org

1, 1, 4, 22, 58, 58, 58, 54972, 68112, 4748632, 861066640, 861066640, 861066640, 861066640, 861066640
Offset: 1

Views

Author

Amarnath Murthy, Nov 22 2003

Keywords

Comments

a(16) > 1.4*10^13. [Max Alekseyev]

Crossrefs

Cf. A124417.

Programs

  • Maple
    for n from 1 to 10 do for k from 1 do f:=0: for i from 1 to n do if not isprime(k*i^2+1) then f:=1: break fi od: if f=0 then printf("%d, ",k): break fi od od: # C. Ronaldo

Extensions

Corrected and extended by C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 26 2004
a(11)-a(15) from Donovan Johnson, Sep 27 2008

A305740 a(n) is the smallest k such that 10^m*k + 1 is prime for all m in 1..n.

Original entry on oeis.org

1, 1, 4, 7, 7, 170716, 170926, 26373004, 247201983, 10562770680, 118345066231, 54717848613610
Offset: 1

Views

Author

Jon E. Schoenfield, Jun 23 2018

Keywords

Comments

a(12) > 3*10^11.

Examples

			10^1*1 + 1 = 11 (prime), so a(1) = 1.
10^2*1 + 1 = 101 (also prime), so a(2) = 1 as well.
10^3*1 + 1 = 1001 = 7*143, so a(3) > 1;
10^1*2 + 1 = 21 = 3*7, so a(3) > 2;
10^2*3 + 1 = 301 = 7*43, so a(3) > 3;
however, for m = 1..3, 10^m*4 + 1 yields 41, 401, and 4001, each of which is prime, so a(3) = 4.
		

Crossrefs

Cf. A000040 (primes), A124417, A124516.

Extensions

a(12) from Giovanni Resta, Jun 25 2018
Showing 1-8 of 8 results.